24 research outputs found

    Laryngeal squamous cell carcinoma cell lines show high tolerance for siRNA-mediated CDK1 knockdown

    Get PDF
    Alterations of the cell cycle checkpoints lead to uncontrolled cell growth and result in tumorigenesis. One of the genes essential for cell proliferation and cell cycle regulation is CDK1. This makes it a potential target in cancer therapy. In our previous study we have shown upregulation of this gene in laryngeal squamous cell carcinoma (LSCC). Here we analyze the impact of siRNA-mediated CDK1 knockdown on cell proliferation and viability, measured with cell growth monitoring and colorimetric test (CCK8 assay), respectively. We proved that a reduction of CDK1 expression by more than 50% has no effect on these cellular processes in LSCC cell lines (n=2). Moreover, using microarrays, we analyzed global gene expression deregulation in these cell lines after CDK1 knockdown. We searched for enriched ontologies in the group of identified 137 differentially expressed genes (>2-fold change). Within this group we found 3 enriched pathways: protein binding (GO:0005515), mitotic nuclear division (GO:0007067) and transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) and a group of 11 genes encoding proteins for which interaction with CDK1 was indicated with the use of bioinformatic tools. Among these genes we propose three: CDK6, CALD1 and FYN as potentially dependent on CDK1

    Loss of the MAF Transcription Factor in Laryngeal Squamous Cell Carcinoma

    Get PDF
    MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3'UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.</p

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The tumor suppressive mir-148a is epigenetically inactivated in classical Hodgkin lymphoma

    No full text
    DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL

    Deregulated miRNAs contribute to silencing of B-cell specific transcription factors and activation of NF-κB in classical Hodgkin lymphoma

    No full text
    Simple Summary: The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma. Abstract: A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL

    Identification of two unannotated miRNAs in classic Hodgkin lymphoma cell lines.

    No full text
    MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1

    Prenatal diagnosis of glutaric acidemia type 2 with the use of exome sequencing — an up-to-date review and new case report

    Get PDF
    Introduction: Inborn errors of metabolism (IEM) also called metabolic diseases constitute a large and heterogenous group of disorders characterized by a failure of essential cellular functions. Antenatal manifestation of IEM is absent or nonspecific, which makes prenatal diagnosis challenging. Glutaric acidemia type 2 (GA2) is a rare metabolic disease clinically manifested in three different ways: neonatal-onset with congenital anomalies, neonatal-onset without congenital anomalies and late-onset. Neonatal forms are usually lethal. Congenital anomalies present on prenatal ultrasound as large, hyperechoic or cystic kidneys with reduced amniotic fluid volume. Material and methods: We present a systematic literature review describing prenatal diagnosis of GA2 and a new prenatal case. Results: Ten prenatally diagnosed cases of GA2 have been published to date, mainly based on biochemical methods. New case of GA2 was diagnosed using exome sequencing method. Discussion: All prenatal cases from literature review had positive history of GA2 running in the family. In our study trio exome sequencing was performed in case of fetal hyperechoic kidneys without a history of GA2. Consequently, we were able to identify two novel pathogenic variants of the ETFDH gene and to indicate their parental origin. Summary: Exome sequencing approach used in case of fetal hyperechoic kidneys allows to identify pathogenic variants without earlier knowledge of the precise genetic background of the disease. Hyperechoic, enlarged kidneys could be one of the clinical features of metabolic diseases. After exclusion of chromosomal abnormalities, urinary tract obstruction and intrauterine infections, glutaric acidemia type 2 and number of monogenic disorders should be consider

    Global miRNA Expression Profiling Identifies miR-1290 as Novel Potential oncomiR in Laryngeal Carcinoma.

    No full text
    Laryngeal squamous cell carcinoma (LSCC) is the most common group among head and neck cancers. LSCC is characterized by a high incidence in Europe. With the aim of better understanding its genetic background we performed global miRNA expression profiling of LSCC cell lines and primary specimens. By this approach we identified a cohort of 33 upregulated and 9 downregulated miRNA genes in LSCC as compared to epithelial no tumor controls.Within this group we identified overexpression of the novel miR-1290 gene not reported in the context of LSCC before. Using a combined bioinformatical approach in connection with functional analysis we delineated two putative target genes of miR-1290 namely ITPR2 and MAF which are significantly downregulated in LSCC. They are interesting candidates for tumor suppressor genes as they are implicated in apoptosis and other processes deregulated in cancer.Taken together, we propose miR-1290 as the new oncomiR involved in LSCC pathogenesis. Additionally, we suggest that the oncogenic potential of miR-1290 might be expressed by the involvement in downregulation of its target genes MAF and ITPR2

    Social Attitude to COVID-19 and Influenza Vaccinations after the Influenza Vaccination Season and between the Second and Third COVID-19 Wave in Poland, Lithuania, and Ukraine

    No full text
    The SARS-CoV-2 pandemic affected the entire world and contributed to severe health and economic consequences. A safe and effective vaccine is a tool allowing the pandemic to be controlled. Hence, we aimed to conduct a survey on vaccinations against seasonal influenza and COVID-19 in Poland, Lithuania, and Ukraine. We also evaluated societal attitudes towards influenza and COVID-19 vaccinations. Materials and methods: We conducted the study between December 2020 and May 2021. At the time, the countries subject to the research were between the second and third waves of the COVID-19 pandemic. We used an anonymous and self-designed questionnaire comprised of eleven closed-ended questions and a short socio-demographic section. The questionnaire was administered by direct contact or mainly (due to the COVID-19 pandemic) by e-mail or Facebook. Finally, we included 2753 answers from Poland, 1852 from Ukraine, and 213 from Lithuania. Results: Between 61% (Poland) and 72.9% (Ukraine) of the study participants have never been vaccinated against influenza (p &lt; 0.05). Totals of 67.6% of the respondents in Poland, 73.71% in Lithuania, and 29.5% in Ukraine responded that they want to be vaccinated against COVID-19 (p &lt; 0.05). Vaccine hesitancy was mainly related to worries about its side effects. There were also vaccine non-adopters in the study. In Ukraine, 67% of the respondents were clearly opposed to mandatory COVID-19 vaccines, compared to 41.7% in Poland and 30.99% in Lithuania (p &lt; 0.05). Conclusions: There are still many people who present vaccine hesitancy or are opposed to vaccines. Thus, societal education about vaccination and the pandemic is crucial. Vaccine hesitancy or refusal might be related to vaccine origin. Shortages of influenza vaccines made it impossible to vaccinate those who were determined to be vaccinated. There is room for discussion of mandatory COVID-19 vaccinations
    corecore