23 research outputs found

    The Effect of Single Nucleotide Polymorphisms from Genome Wide Association Studies in Multiple Sclerosis on Gene Expression

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is a complex neurological disorder. Its aetiology involves both environmental and genetic factors. Recent genome-wide association studies have identified a number of single nucleotide polymorphisms (SNPs) associated with susceptibility to (MS). We investigated whether these genetic variations were associated with alteration in gene expression. METHODS/PRINCIPAL FINDINGS: We used a database of mRNA expression and genetic variation derived from immortalised peripheral lymphocytes to investigate polymorphisms associated with MS for correlation with gene expression. Several SNPs were found to be associated with changes in expression: in particular two with HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRB1, HLA-DRB4 and HLA-DRB5, one with ZFP57, one with CD58, two with IL7 and FAM164A, and one with FAM119B, TSFM and KUB3. We found minimal cross-over with a recent whole genome expression study in MS patients. DISCUSSION: We have shown that many susceptibility loci in MS are associated with changes in gene expression using an unbiased expression database. Several of these findings suggest novel gene candidates underlying the effects of MS-associated genetic variation

    Heterogeneity in Multiple Sclerosis: Scratching the Surface of a Complex Disease

    Get PDF
    Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these “MS subtypes” should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research

    Access to

    Get PDF
    Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1 * 15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these "MS subtypes" should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research

    Genomic Regions Associated with Multiple Sclerosis Are Active in B Cells

    Get PDF
    More than 50 genomic regions have now been shown to influence the risk of multiple sclerosis (MS). However, the mechanisms of action, and the cell types in which these associated variants act at the molecular level remain largely unknown. This is especially true for associated regions containing no known genes. Given the evidence for a role for B cells in MS, we hypothesized that MS associated genomic regions co-localized with regions which are functionally active in B cells. We used publicly available data on 1) MS associated regions and single nucleotide polymorphisms (SNPs) and 2) chromatin profiling in B cells as well as three additional cell types thought to be unrelated to MS (hepatocytes, fibroblasts and keratinocytes). Genomic intervals and SNPs were tested for overlap using the Genomic Hyperbrowser. We found that MS associated regions are significantly enriched in strong enhancer, active promoter and strong transcribed regions (p = 0.00005) and that this overlap is significantly higher in B cells than control cells. In addition, MS associated SNPs also land in active promoter (p = 0.00005) and enhancer regions more than expected by chance (strong enhancer p = 0.0006; weak enhancer p = 0.00005). These results confirm the important role of the immune system and specifically B cells in MS and suggest that MS risk variants exert a gene regulatory role. Previous studies assessing MS risk variants in T cells may be missing important effects in B cells. Similar analyses in other immunological cell types relevant to MS and functional studies are necessary to fully elucidate how genes contribute to MS pathogenesis

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Seasonal Distribution of Psychiatric Births in England

    Get PDF
    There is general consensus that season of birth influences the risk of developing psychiatric conditions later in life. We aimed to investigate whether the risk of schizophrenia (SC), bipolar affective disorder (BAD) and recurrent depressive disorder (RDD) is influenced by month of birth in England to a similar extent as other countries using the largest cohort of English patients collected to date (n=57,971). When cases were compared to the general English population (n=29,183,034) all diseases showed a seasonal distribution of births (SC p=2.48E-05; BAD p=0.019; RDD p=0.015). This data has implications for future strategies of disease prevention

    Month of birth, vitamin D and risk of immune mediated disease: a case control study

    Get PDF
    ABSTRACT: BACKGROUND: A season of birth effect in immune-mediated diseases (ID) such as multiple sclerosis and type 1 diabetes has been consistently reported. We aimed to investigate whether season of birth influences the risk of rheumatoid arthritis, Crohn's disease, ulcerative colitis and systemic lupus erythematosus in addition to multiple sclerosis, and to explore the correlation between the risk of ID and predicted ultraviolet B (UVB) light exposure and vitamin D status during gestation. METHODS: The monthly distribution of births of patients with ID from the UK (n = 115,172) was compared to that of the general population using the Cosinor test. Predicted UVB radiation and vitamin D status in different time windows during pregnancy were calculated for each month of birth and correlated with risk of ID using the Spearman's correlation coefficient. RESULTS: The distributions of ID births significantly differed from that of the general population (P = 5e-12) with a peak in April (odds ratio = 1.045, 95% confidence interval = 1.024, 1.067, P <0.0001) and a trough in October (odds ratio = 0.945, 95% confidence interval = 0.925, 0.966, P <0.0001). Stratification by disease subtype showed seasonality in all ID but Crohn's disease. The risk of ID was inversely correlated with predicted second trimester UVB exposure (Spearman's rho = -0.49, P = 0.00005) and third trimester vitamin D status (Spearman's rho = -0.44, P = 0.0003). CONCLUSIONS: The risk of different ID in the UK is significantly influenced by the season of birth, suggesting the presence of a shared seasonal risk factor or factors predisposing to ID. Gestational UVB and vitamin D exposure may be implicated in the aetiology of ID
    corecore