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Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the
pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment
have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed
within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover,
apart from the well-established association with the HLA-class I DRB1*15:01 allele, other genetic variants have been shown to
vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that
different pathways may be active in different MS patients. We conclude that these “MS subtypes” should still be considered as part
of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS
course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim

of modern research.

1. Introduction

Multiple Sclerosis (MS) is a debilitating disease of the
central nervous system (CNS) pathologically characterized
by myelin loss and axonal degeneration. Although more than
100 years have passed since Charcot, Carswell, Cruveilhier,
and others described the clinical and pathological character-
istic of MS, both the etiology and the pathogenesis of this
disease are not yet conclusively known [1].

With no reliable diagnostic test currently available, MS
remains a clinical diagnosis with supportive paraclinical
evidence. The basis of diagnosis is to clinically establish that
disease activity has affected more than one part of the CNS
and on more than one occasion (dissemination in time and
space). This may be supplemented by investigations such as

MR, cerebrospinal fluid (CSF) electrophoresis, and evoked
potential testing [1].

Both genetic and environmental factors have been shown
to increase the risk of MS and only a few features are
shared by most MS patients: the presence of inflammation,
demyelination, and axonal loss within the CNS, a history of
Epstein-Barr virus (EBV) infection and the detection of non-
specific oligoclonal IgG bands in the CSF which have been
shown in up to 95% of the MS patients [2, 3].

However, no common target antigen has been identified,
no single diagnostic test is currently available and reliable
biomarkers of disease activity are also lacking. Addition-
ally, MS is characterized by a very broad and extensive
heterogeneity in terms of clinical features, genetics, patho-
genesis and responsiveness to treatments. Taken together,
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TasLE 1: Classic MS and its variants.

Classic MS

MS variants

(i) Relapsing-remitting (RRMS): 85% of all MS cases at onset

(ii) Second ary progressive (SPMS): 70%—80% of RRMS cases after 10 years from disease onset

(iii) Primary progressive (PPMS): 15% of all MS cases at onset
(iv) Progressive-relapsing (PRMS): very small percentage

(i) Neuromyelitis Optica (NMO)
(ii) Balo’s concentric sclerosis
(iii) Margburg’s MS variant

(iv) Schilder’s MS variant

these observations have raised the question of whether MS is
more a spectrum of diseases rather than a single entity. In this
paper we aim to provide an updated analysis of the clinical,
genetic, pathological, and immunological heterogeneity in
MS.

2. Clinical Features

The differential diagnosis of MS is not straightforward. Sev-
eral conditions such as infections, cerebrovascular diseases
and autoimmune diseases can mimic the clinical features
and the white matter changes seen in MS. Moreover, a
few disorders are considered as MS variants and patients
suffering from these conditions can either later develop
a classic form of MS or show a disease course which is
indistinguishable from that of classic MS. Thus, within the
MS spectrum we can distinguish between classic MS (and its
subcategories) and MS variants (Table 1) [4].

2.1. Classic MS. The clinical course of classic MS is highly
variable, ranging from individuals showing occasional sen-
sory nuisance to patients with fulminant course and death
within months after disease onset.

Approximately 85% of MS patients present with a
clinically isolated syndrome (CIS) and later develop the
relapsing-remitting form (RRMS), in which acute exacer-
bations are followed by periods of remission of symptoms.
With time, recovery from each episode is incomplete and
persistent symptoms accumulate. Approximately 70% to
80% of RRMS cases will enter the secondary progressive
phase (SPMS) [1, 4]. About 15% of MS patients develop
the primary progressive form of MS (PPMS), which is
characterized by a gradually progressive clinical course from
disease onset. Finally, a small group of patients are diagnosed
with progressive relapsing MS (PRMS) in which only partial
or no recovery occurs after exacerbations and disability
accumulates in a stepwise manner.

Further complicating this clinical scenario, the MS
course is highly variable even within subgroups. The clinical
outcome of RRMS cases varies from very mild forms of
disease, wherein only minimal disability (Expanded Dis-
ability Status Scale, EDSS < 3) is attained over a period
greater than 20 years from disease onset (mild MS) to rapidly
progressive forms in which secondary progression is achieved
in a few years (malignant MS) [5]. Moreover, during the
secondary progressive phase of MS, disability progression
can be acquired either because of a failure to recover from
relapses (relapsing SPMS) or in the absence of clinically
evident relapses (non relapsing SPMS) [6, 7]. Variability in
disease outcome is also present in PPMS. In a recent study,

the time to reach an EDSS of 6 was measured in a large cohort
of PPMS patients. Interestingly, the rate of progression was
shown to be slower than in other previous studies (14 years
versus 7.1 years and 8.5 years to an EDSS of 6). Moreover, a
marked variability was found within the same PPMS cohort
with 25% of the patients reaching an EDSS of 6 in less
than 7.8 years and another 25% in more than 27 years [8—
10].

Poor outcome variables include male gender, frequent
relapses in the first two years, a short period between the first
and second attack, the absence of full recovery after the first
attack, a high baseline T2 load on MRI, motor and cerebellar
clinical signs, and African ethnicity [1, 4, 5, 11]. However,
the reasons behind this variability are still unknown and
although patients with benign disease for 10 years or longer
tend to remain stable and not progress, the long-term clinical
outcome of MS remains largely unpredictable [12].

2.2. MS Variants. Four conditions are known to closely
resemble the classic form of MS and as yet it is not clear to
what extent MS and its variants share common etiological
and pathological features.

Neuromyelitis optica (NMO) or Devic’s disease is a
severe demyelinating disease of the CNS which preferentially
affects the spinal cord and the optic nerve [13]. Although
several epidemiological and clinical features discriminate
between NMO and MS, whether these two conditions were
two completely different entities or two faces of the same coin
has long been debated. An important distinguishing finding
was the detection in the serum of NMO patients of a specific
antibody binding to aquaporin 4, a channel playing a central
role in water homeostasis in the CNS [14]. The consequent
detection of the same antibody in patients suffering from the
Asian optical-spinal form of MS has led to the hypothesis that
NMO and this particular form of MS may represent the same
entity [13].

Marburg’s variant of MS is characterized by fulminant
demyelination and severe axonal loss which rapidly leads to
extreme disability and sometimes death. A similar disease
course is present in Balo’s concentric sclerosis in which the
pathological hallmark is the presence of lesions (detectable
by MRI) characterized by concentric rings of demyelinated
and normal tissue. Finally, Schilder’s disease is a demyelinat-
ing disorder typically affecting children and characterized by
large and confluent white matter lesions. Further details on
MS variants can be found elsewhere [15, 16].

The presence of these variants and the fact that NMO
is now acknowledged as a separate entity from MS raise the
question as to whether analogous differences may be respon-
sible for further stratification within the MS spectrum.
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FiGure 1: The relative risk of MS is determined by trans epistasis
between different HLA-DRBI alleles.

3. Genetics

3.1. Heterogeneity at Susceptibility Loci. A major role in
determining genetic susceptibility to MS is played by the
Human Leukocyte Antigen (HLA) genes which reside within
the major histocompatibility complex (MHC) region. Each
HLA allele is characterized by sets of digits separated by
colons. The first set of digits describes the allele group, which
often corresponds to the serological antigen. The second set
of digits is used to distinguish alleles which are part of the
same group but differ in the amino acid sequence of the
encoded protein.

An association between MS and the MHC was demon-
strated for the first time in the 1970s [17]. The asso-
ciation was later fine mapped to the extended class
II haplotype HLA-DRB5*01:01-HLA-DRB1*15:01-HLA-
DQA1*01:02-HLA-DQB1*06:02 in north Europeans [18]
and it is now widely acknowledged that a predominant role
is played by the HLA-DRB1*15:01 allele. Notably, this allele
has been found to increase the risk of MS in nearly all the
populations studied and an admixture scan of an African
American cohort further suggested a major role for HLA-
DRBI [19-21].

On the other hand, several HLA-DRBI1 alleles have
been either positively or negatively associated with MS and
these associations vary significantly across populations [22—
29]. For example, in Sardinians MS is associated with the
DRB1*03:01, DRB1*04:05 and DRB1*13:03 alleles [29].
Conversely, other allele groups such as DRB1*01, DRB1*10,
DRBI1*11 and DRB1*14 in Canadians and DRB1*09 in
Japanese have been shown to exert a protective effect [26—
28, 30]. Additionally, several studies have investigated the
presence of HLA-class I alleles acting independently of class
II loci. HLA-A*02, HLA-B*44 and HLA-Cw*05 alleles have
been shown to decrease the risk of MS after conditioning on
the presence of DRB1*15:01 [31-34]. A current list of HLA-
class I and class II MS-associated alleles is provided in Table 2.

This scenario is further complicated by the extensive
linkage disequilibrium of the MHC region and the presence
of cis and trans epistasis between different HLA-class II genes
(Figure 1) 26, 27, 35, 36].

However, the MHC is not the only a genetic region
associated with MS susceptibility. Recent genome wide

association (GWA) studies revealed the existence of multiple
non-MHC MS susceptibility loci of modest effect [37-54].
A current list of the well-established associated variants is
shown in Table 3.

The vast majority of these genes are involved in the
immune system, and this supports the hypothesis that MS
is an immune-mediated disorder of the CNS. However, as
evidenced by their wide expression profile (see Table 3),
different pathways in both the innate and adaptive immune
responses are likely to be involved in MS pathogenesis.
Intriguingly, another MS-associated gene (KIFIB) encodes
a kinesin superfamily member which is believed to be
responsible for axonal transport of mitochondria and
synaptic vesicles precursors, suggesting that also a primary
neurodegenerative component may play a role in MS [47].

In addition to these genes, several others have been
associated with MS but currently lack replication. However,
this does not necessarily mean false positive association. A
careful ascertainment of cases and controls is a fundamental
requirement which is not easily achieved, especially in a
heterogeneous disease such as MS. Moreover, even in a
perfectly designed study, the lack of replication could be
simply explained by a diverse role played by the same variant
in different populations. Genes such as STAT3 and CBLB
have been associated with MS in the Finnish and Sardinian
MS populations respectively, but have not been replicated by
other studies. Interestingly, STAT3 is a transcription factor
involved in the differentiation of naive CD4+ T cells into
Th17 cells, while CBLB has been shown to negatively regulate
both T and B cell receptor activations [55, 56]. Although
a false positive association may well be responsible for this
inconsistency, the immunological role played by these genes
raises the hypothesis that some genetic variants may be
either more easily identified or etiologically more relevant in
certain isolated populations.

3.2. Heterogeneity at Outcome Loci. Several studies have also
investigated the association between genetic variants and
clinical outcome. In a Canadian report, the HLA-DRBI1
allele frequencies were compared between mild (RRMS with
EDSS < 3 over a period >20 years) and malignant (PPMS
or RPMS with EDSS > 6 within 5 years of disease onset)
MS cases. DRB1*01 was shown to be protective against
a severe disease course in both sporadic and familial MS.
Intriguingly, in the familial cases the protective effect of
DRB1*01 was only significant when it was part of the
DRB1*01-DRB1*15:01 genotype. HLA-DRB1*15:01 was
instead equally distributed between mild and malignant
MS patients, although a greater proportion of DRB1*15:01
homozygous patients was found in the malignant group [57].
A protective role for DRB1*01 was then confirmed in an
Australian cohort of 984 RRMS and 246 PPMS patients, but
only in the presence of DRB1*15 on the other allele (similarly
to the Canadian familial cases). Additionally, DRB1*04 was
also negatively associated with PPMS [58].

Conversely, in a Spanish MS cohort, both DRB1*01
and DRB1*04 were found to be associated with a shorter
time to reach an EDSS of 6 [59]. Finally, in a large
French study, a positive correlation between DRB1*15:01
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TasLE 2: Reported HLA class IT and class I associations across the world.

Population Approximate OR Reference
HLA-DRBI alleles
Canada (26, 27]
*01 Sweden 0.6 [32]
UK, US [31]
Canada (26, 27]
03 Sweden, L7 [24]
UK, US, Italy, Spain [25]
Sardinia [29]
*04 Sardinia 2.2 [29]
07 Ttaly 0.6 [22]
%08 Canada 1.7 [26,27]
UK, US, Italy, Spain (15/8 genotype) [25]
*09 Japan 0.4 [28]
*10 Canada 0.7 (26, 27]
*11 Canada 0.7 [26, 27]
13 Sardinia ) [29]
Israel [23]
14 Canada, 0.3 [26,27]
UK, US, Italy, Spain [25]
*15 Near-universal 3
HLA-class I alleles
A*02 Sweden 0.6 [33]
Ttaly [31]
B*44 UK, US 0.4 [34]
Cw*05 UK, US <1 [32]

and disease progression was shown in the RRMS but not in
the PPMS groups [60]. While these findings seem conflicting
it may be due to differences in study design: comparing
PPMS with RRMS may fail to elicit important outcome
effects given the tremendous clinical variability within the
MS subgroups. Also, as mentioned previously, the same
variant may play diverse roles in different populations.

HLA genes are thought to be involved in immune-
mediated diseases through their role in antigen presentation.
Thus one reason different HLA-DRBI1 alleles may lead
to different outcomes among MS patients may be due
to antigen specificity. The myelin sheath is a complex
structure comprised of various types of lipids (glycosph-
ingolipids, cholesterol, and phospholipids) and proteins
including proteolipid protein (PLP), myelin basic protein
(MBP), myelin-associated glycoprotein (MAG), myelin-
oligodendrocyte glycoprotein (MOG), and 2" 3’-cyclic-
nucleotide-3'phosphodiesterase (CNP) [61]. All of the above
components have been suggested as candidate antigens,
but to date there is no verified antigen for MS [61]. The
complexity of the disease together with the heterogeneity of
the MHC associated alleles would suggest that the different
myelin components or the entire complex structure of the
myelin sheath may be the target of the immune reaction.
Differences in antigen specificity and the role played by the
protein within the myelin sheath may lead to differences in
clinical outcome in a patient-specific manner.

Non-MHC loci have also been investigated and a number
of genes have been associated with different markers of
disease phenotype such as age of onset, disease severity,
lesion load and brain atrophy. Interestingly, a gene-ontology
analysis showed that many of these genes were involved in
neural processes and several cellular mechanisms, but further
studies are needed to confirm these findings [62].

4. Pathology

4.1. Relapsing versus Progressive MS. The pathological hall-
mark of MS is the sclerotic plaque, which represents the end
stage of a process involving inflammation, demyelination,
remyelination, astrocytosis, and axonal degeneration. How-
ever, the order in which these processes take place is still
unknown [1].

In the relapsing-remitting phase, the classical patho-
logical finding is active white matter plaques in which
inflammatory demyelination clearly plays a central role.
Myelin-laden macrophages and (to a lesser extent) CD8+ T
cells dominate the lesions, while CD4+ T cells (both Thl
and Th17) are found primarily in the perivascular regions
and with relatively smaller numbers in the parenchyma [63—
66]. Cortical demyelinating lesions are also present and
have been shown to correlate with cortical atrophy, disease
progression, physical disability, and cognitive impairment
at later stages [67-70]. Interestingly, cortical demyelination
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TaBLE 3: List of established non-MHC MS-associated genes.

Gene Proposed function CH OR UCSC Microarray expression data References

IL7Ra CD4+ T cells ++++, CD8+ T cells ++++,

Interleukin 7 receptor ~ Cytokine receptor 5 118 D56+ NK +++, BCDA4+DCs ++, [38-42, 44]
CD14+ Monocytes+

[L2Ra Cytokine receptor 10 119 D4+ Tecells++ CD8+ T cells +, (37, 38, 40, 42]

Interleukin 2 receptor CD56+ NK +

CLECL6A Sugar binding C type lectin 16 118 CP19+Bcells+ CD56+ NK+, [45, 48, 49, 53]

C lectin domain A BCDA4+DCs +
CD56+ NK ++++, CD14+ Monocytes+-+++,

CD58 Ligand of CD2/T cell activation 1 1.30 CD8+ T cells +++, CD19+ B cells++, [37, 38, 43, 45, 49]
CD4+ T cells ++, BCDA4+DCs ++

CD6 Cell signaling/T cell activation 11 1.18 CD4+ T cells ++-++, CD8+ T cells ++-++, [54]
CD56+ NK +++, BCDA4+DCs +

IRF8 CD19+ B cells ++++, BCDA4+DCs ++++,

Interferon regulatory ~ Interferon regulatory factor 16 0.80 CD56+ NK ++, CD14+ Monocytes ++, [54]

factor 8 CD4+ T cells +, CD8+ T cells +

CD226 Cell-cell adhesion 18 1.11 CD56+ NK ++ (50, 53]

TNFRSF1A CD14+ Monocytes +++, CD56+ NK ++,

Tumor necrosis factor LUMor necrosis factor receptor 12 1.20 BCDA4+DCs +, CD4+ T cells +, [54]

receptor 1 CD8+ T cells +

EVI5 BCDA4+DCs +, CD14+ Monocytes +,

Ecotropic viral Cell cycle regulation I L1 D19+ B cells+ [37, 45, 51]

integration site 5

CD40 Tumor Necrosis Factor receptor 20 1.20 CD56+ NK +, CD14+ Monocytes +, [45]

Super family member 5 BCDA4+DCs +

TYK2 CD56+ NK +++, CD14+ Monocytes +++,

Tyrosine kinase 2 Cell signaling 19 132 BCDA4+DCs +++, CD8+ T cells ++, [44, 45]
CD19+ B cells ++, CD4+ T cells ++

KIF1B

Kinesin family member Axonal transport 1 1.34 Whole brain ++++ [47]

1B

+ . . . .
Increasing number of crosses correspond to increasing expression levels.

seems to be present since the relapsing-remitting phase but
becomes more prominent during the secondary progressive
phase [71]. Moreover, in contrast with those of the white
matter, grey matter lesions typically show a very low grade
of both T and B inflammatory infiltrates [67].

In the progressive phase of MS (both PPMS and SPMS),
neurodegeneration proves the main pathological finding and
occurs on the background of a compartmentalized patho-
logical immune reaction which seems to act independently
from the central immune system [64, 71]. T cells are still
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TaBLE 4: Patterns of demyelination described by Lucchinetti et al. 2000 [7].

Pattern of white matter demyelination

Pathology

(i) Macrophage mediated

(i) Perivenous distribution of lesions
(ii) T cell and macrophage infiltrates
(iii) Shadow plaques (remyelination)
(iv) Sharp lesion edges

(ii) Antibody mediated

(i) As pattern I lesions
(ii) Deposition of immunoglobulin and activated complement

(iii) Distal oligodendrogliopathy

(i) Important oligodendrocyte apoptosis

(ii) T cell, macrophage, and microglia infiltrates

(iii) Degeneration of distal oligodendrocyte processes

(iv) Ill defined lesion edges

(v) Preferential loss of myelin associated glyco-protein (MAG)
(vi) Concentric Balo-like lesions

(iv) Primary oligodendrocyte damage

(i) Similar to pattern I
(i1) Massive oligodendrocyte loss

TaBLE 5: Types of cortical lesions described by B& et al. 2003 [83].

Typeof cortical lesion Extension

Lesion delimited within the cortex. Neither the brain surface nor the subcortical white matter is involved

Type I Extension through both white and gray matter
Type II

Type III Extended subpial lesions

Type IV

Extension throughout the full width of cerebral cortex but white matter is not involved

the main cell population found within chronic lesions but
they are sparse and mainly located in perivascular spaces,
while microglia, B cells, and plasma cells become increasingly
prominent [72, 73]. Additionally, some studies have shown
the presence of clusters of B cells resembling the structure
of germinal centers inside the meninges [74, 75]. These B
cells have been reported to bear EBV, although this finding
lacks replication [76, 77]. Finally, inflammatory infiltrates
are also detected in the normal appearing white matter
(NAWM) in which T cells (mainly CD8+) and profound
microglia activation are associated with diffuse axonal injury
and do not correlate with the number, size, location, and
destructiveness of active lesions [64, 71, 78].

4.2. Pathological Heterogeneity. The presence of heterogene-
ity in active white matter lesions has been largely debated
since Lucchinetti et al. defined four distinct types of active
plaques from a number of autopsy (n = 32) and biopsy
(n = 51) samples, strongly suggesting a multiple disease
hypothesis (Table 4) [7].

However, these findings must be interpreted with caution
for several reasons: (1) Biopsy data are bound to be less rep-
resentative and reliable than autopsy material [79]. (2) The
pathological criteria used to define the activity of the plaques
still lack a confident validation and this is likely to undermine
the entire classification. (3) Complement activation (pattern
II) is not easy to interpret in formalin-fixed tissue and has
been shown to be an invariable and nonspecific feature of
not only MS but also other white matter conditions [79-81].
(4) Apoptotic oligodendrocytes (pattern III) could be either

mistaken for other apoptotic cells, in particular lymphocytes,
or merely be the consequence of confounding factors such
terminal hypoxia [79]. (5) Partial Balo lesions (pattern III)
are a common finding in relapsing remitting patients and
have been shown also in other patterns of MS lesions [81, 82].
(6) Finally, it is not clear to what extent these pathological
findings should be seen in the lesions in order to confidently
define them as part of a specific pattern.

Taken together, these observations suggest that these
different types of white matter lesions are more likely to
be part of the same spectrum or reflect different stages of
demyelination rather than representing single and distinct
pathological entities [63].

It is now widely acknowledged that disease progression
depends on accumulated neuronal degeneration and cortical
atrophy. Whether these are reached as a consequence of
inflammation and demyelination or represent an indepen-
dent neurodegenerative process has long been debated.
Theoretically, five pathways may be involved and respon-
sible for neuronal damage: (1) white matter demyelinating
lesions, (2) grey matter demyelinating lesions of which four
different types have been described (Table 5) [83], (3) diffuse
inflammation of the NAWM, (4) B cell follicles located in
the meninges which have been shown to correlate with areas
of cortical atrophy [64, 74], and (5) a primary independent
neurodegenerative process [84, 85].

Rather than acting independently, these mechanisms are
likely to act together but to a different extent in a patient
specific manner. These differences would then lead to the
pathological heterogeneity seen in MS.
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5. Immunological Phenotype

5.1. Cell Type Complexity. For a long time, MS has been
generally considered as a CD4+ T helper cell-(Th-) mediated
immune disorder. This concept primarily arose from the
HLA-class IT association with MS susceptibility and from the
central role played by Th cells in experimental autoimmune
encephalomyelitis (EAE), the rodent model of MS, in which
an MS-like demyelinating disease is induced by the injection
of myelin-specific CD4+ T cells [86]. However, while the
treatment with an antibody against the p40 subunit of IL-12,
which is important for Th1 cell differentiation, could prevent
EAE [87], the use of ustekinumab (another antibody for the
same subunit) produced no benefit in Phase II clinical trials
[88]. These results highlight the much greater complexity of
MS immunopathogenesis when compared to the EAE model.

Interestingly, the most consistent immunological feature
in MS is the presence of IgG oligoclonal bands which are
detected in the CSF of up to 95% of the MS patients
[3]. Although their specificity remains to be resolved, their
presence stands for an abnormal B cell activation within the
CNS. Other recent studies suggest a relevant role played by
B cells in MS pathogenesis in terms of T cell activation, CIS
conversion to MS, and development of disease progression
[76, 77, 89-91]. The central role played by B cells in
MS is further supported by the significant reduction of
inflammatory lesions and clinical relapses observed when B
cells are depleted using the anti-CD20 monoclonal antibody
Rituximab [92, 93].

T cells are also important and several recent studies were
aimed at the identification of the T cell subtypes primarily
involved in the immunopathogenesis of MS.

CD8+ T cells represent the largest T cell subset both
in acute and chronic MS lesions. Moreover, they show
oligoclonal expansion within the CNS strongly suggesting
their contribution to MS pathogenesis [94-97].

Interleukin 17 (IL-17) producing T helper cells (Th17
cells) have been recently identified as a distinct subset of T
cells strongly involved in autoimmunity [98, 99]. A central
role for Th17 cells in MS has been suggested by several
studies reporting: (1) the presence of IL-17+ T cells in active
MS lesions [66], (2) an increased ability of CD4+ T cells
taken from MS patients to produce IL-17 upon polyclonal
mitogen or myelin-specific antigen stimulation [100], (3)
higher frequency of Th17 in the CSF of CIS and RRMS
patients in the relapsing rather than remitting phase [101],
(4) higher expression of the transcription factor STAT 3
(which regulates the differentiation of CD4+ T cells into
Th17 cells) during the relapsing phase of MS [102], and (5)
the upregulation of miR-326 (a positive regulator of Th17
differentiation) in RRMS patients experiencing a relapse in
comparison with remitting cases and healthy controls [103].
However, although these findings strongly support a role for
Th17 cells in MS, whether these cells are causative or merely
a marker of disease activity remains a challenging question.

The role of the main type of regulatory T cells (CD4+
CD25+ FOXP3+ Treg) in MS has also been extensively
investigated. In RRMS patients, these Tregs display an
impaired capacity to suppress both polyclonally activated

and myelin-specific T cells as compared with controls [104—
106]. Interestingly, a correlation between their suppressive
function and vitamin D levels has also been reported giving
a potential explanation for the association between vitamin
D levels and relapse rate [107, 108]. Additionally, recent
thymic emigrating Tregs seem to play a major role as they
were shown to be reduced and to contain a significantly
lower number of T cell receptor excision circles in RRMS as
compared to normal controls [109, 110]. Finally, it must be
noted that the CD4+ CD25+ FOXP3+ Tregs only represent
one regulatory cell type and that other subsets have also been
shown to be involved in MS. Further details on regulatory
T cells in MS can be found elsewhere [111, 112].

These studies confirm the presence of a great immuno-
logical heterogeneity in the MS immune system with several
different cell types all likely to be involved. Moreover, it has to
be emphasized that in all the studies mentioned, differences
between cases and controls are often very subtle and no
immunological finding can at present be used as biomarkers
of disease activity.

5.2. Individual Complexity. Most of the data for immunolog-
ical phenotyping derives from studies performed in a limited
number of patients, usually those with RRMS. However, even
in these limited sets, heterogeneity can be appreciated. A
recent study extensively investigated the cytometric profile
of a large cohort of RRMS and CIS patients. Interestingly,
both RRMS and CIS cases showed a decreased frequency of
CD8!*" CD56+ CD3~— CD4~ cells which have a natural killer
(NK) profile, adding to the hypothesis that NK regulatory
properties may also be reduced in MS [113]. Moreover, in
the same study, both RRMS and CIS patients were shown to
cluster into three distinct groups: the first was characterized
by the lower frequency of CD8!°" CD56+ CD3— CD4— cells
while the second and third by changes in the frequencies of
large granular and CD14+ cells, respectively [114].

Another recent study using EAE and RRMS patients
showed differential response to interferon beta (IFN-f)
treatment. Interestingly, IFN-f3 was more effective in Thl
as compared to Thl7-induced EAE. Similarly, in RRMS
patients a higher IL-17F concentration in serum was found in
nonresponders as compared to responders. Non-responders
also showed worse disease with steroid administration and
had a higher number of relapses [115].

Finally, when considering sources of immunological vari-
ation in MS, it is interesting to note that the differentiation
of Th17 and CD4+ CD25+ FOXP3+ Treg cells are tightly
related. The differentiation of CD4+ naive T cells into Th17
cells or Tregs has been shown to be dependent on TGF
stimulation during antigen presentation. High levels of TGF
B promote Treg production, while a low dose of TGF 8
exerts the opposite effect by increasing the expression of the
Th17 transcription factor RORyt leading to the production
of Th17 cells. The flexibility of the Th17-Treg system is
further confirmed by the capacity of TGF f and IL6 to
actually reprogram Tregs into Th17 cells through the RORy7
and STAT3 pathways, respectively [111, 116]. Therefore, an
immune system that was preferentially skewed towards the
production of Th17 or Treg subsets may represent a further



source of interindividual heterogeneity in MS and lead to a
more or less severe relapse rate and clinical course.

Taken together, these studies strongly suggest that differ-
ent cell types are likely to be involved in a patient-specific
manner and that these differences are able to influence
disease course and response to treatments.

6. Conclusions and Perspectives

We have seen how MS clinical features, genetics, pathol-
ogy, and immunological phenotype show a high degree
of variability between individuals and ethnicities. Notably,
no single pathway, reliable biomarker, diagnostic test, and
specific treatment have yet been identified for all MS patients.
However, there are several commonalities among the MS
subtypes: the association of HLA-DRB1*15:01 allele has
been shown across wide variety of populations and within
clinical subtypes of MS [20]; similarly, low vitamin D level
is now an established environmental MS risk factor [108];
furthermore, it is striking that more than 99% of the MS
patients have been found to have been infected with EBV
[117]. These observations lead us to conclude that despite the
wide heterogeneity, there is insufficient evidence to maintain
that MS represents a spectrum of etiologically different
disorders. We believe that genetic and environmental factors
play a central role not only in triggering the onset but also in
modifying the course of the disease by influencing individual
neurological susceptibility and immunological responses.
This is likely to lead to the wide clinical, pathological, and
immunological heterogeneity observed in MS patients.

The differences described in this review remain impor-
tant considerations for accurate study designs as well as the
ultimate goal of personalised treatments for MS patients.
At present, the response to the currently approved thera-
peutic agents (IFN f3, glatiramer acetate, mitoxantrone and
natalizumab) varies significantly across the MS population.
Moreover, no treatment is able to halt disease progression
[118]. A clearer understanding of the heterogeneity within
the MS phenotype is required in order to achieve effective
treatment for all patients with MS.
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