12 research outputs found

    Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene, or Jasmonate Signaling But Requires PHYTOALEXIN DEFICIENT31[W]

    No full text
    Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about 50% of the genes regulated by OGs, including genes encoding enzymes involved in secondary metabolism, show a similar change of expression during B. cinerea infection. In particular, expression of PHYTOALEXIN DEFICIENT3 (PAD3) is strongly up-regulated by both OGs and infection independently of SA, JA, and ET. OG treatments do not enhance resistance to B. cinerea in the pad3 mutant or in underinducer after pathogen and stress1, a mutant with severely impaired PAD3 expression in response to OGs. Similarly to OGs, the bacterial flagellin peptide elicitor flg22 also enhanced resistance to B. cinerea in a PAD3-dependent manner, independently of SA, JA, and ET. This work suggests, therefore, that elicitors released from the cell wall during pathogen infection contribute to basal resistance against fungal pathogens through a signaling pathway also activated by pathogen-associated molecular pattern molecules

    The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against Botrytis cinerea1[W][OA]

    No full text
    Oligogalacturonides (OGs) are endogenous elicitors of defense responses released after partial degradation of pectin in the plant cell wall. We have previously shown that, in Arabidopsis (Arabidopsis thaliana), OGs induce the expression of PHYTOALEXIN DEFICIENT3 (PAD3) and increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of signaling pathways mediated by jasmonate, salicylic acid, and ethylene. Here, we illustrate that the rapid induction of the expression of a variety of genes by OGs is also independent of salicylic acid, ethylene, and jasmonate. OGs elicit a robust extracellular oxidative burst that is generated by the NADPH oxidase AtrbohD. This burst is not required for the expression of OG-responsive genes or for OG-induced resistance to B. cinerea, whereas callose accumulation requires a functional AtrbohD. OG-induced resistance to B. cinerea is also unaffected in powdery mildew resistant4, despite the fact that callose accumulation was almost abolished in this mutant. These results indicate that the OG-induced oxidative burst is not required for the activation of defense responses effective against B. cinerea, leaving open the question of the role of reactive oxygen species in elicitor-mediated defense

    Differential Expression of the Two Arabidopsis

    No full text

    Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance

    Get PDF
    The oxidative burst is an early response to pathogen attack leading to the production of reactive oxygen species (ROS) including hydrogen peroxide. Two major mechanisms involving either NADPH oxidases or peroxidases that may exist singly or in combination in different plant species have been proposed for the generation of ROS. We identified an Arabidopsis thaliana azide-sensitive but diphenylene iodonium-insensitive apoplastic oxidative burst that generates H2O2 in response to a Fusarium oxysporum cell-wall preparation. Transgenic Arabidopsis plants expressing an anti-sense cDNA encoding a type III peroxidase, French bean peroxidase type 1 (FBP1) exhibited an impaired oxidative burst and were more susceptible than wild-type plants to both fungal and bacterial pathogens. Transcriptional profiling and RT-PCR analysis showed that the anti-sense (FBP1) transgenic plants had reduced levels of specific peroxidase-encoding mRNAs, including mRNAs corresponding to Arabidopsis genes At3g49120 (AtPCb) and At3g49110 (AtPCa) that encode two class III peroxidases with a high degree of homology to FBP1. These data indicate that peroxidases play a significant role in generating H2O2 during the Arabidopsis defense response and in conferring resistance to a wide range of pathogens. The Additional file attached below is an Excel spreadsheet of 22,000+ lines containing Supplementary Materials. A PDF version (289 pages) is attached to the main downloadable document

    Temporal Global Expression Data Reveal Known and Novel Salicylate-Impacted Processes and Regulators Mediating Powdery Mildew Growth and Reproduction on Arabidopsis1[W][OA]

    No full text
    Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T2 statistic). Functional analyses of T2-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance
    corecore