250 research outputs found

    Dynamical coupled-channels: the key to understanding resonances

    Full text link
    Recent developments on a dynamical coupled-channels model of hadronic and electromagnetic production of nucleon resonances are summarized.Comment: Invited Plenary talk at the 20th European Conference on Few-Body Problems in Physics (EFB20), September 10-14 2007, Pisa, Italy. To appear in the proceedings in Few-Body System

    The role of qqqqqˉqqqq\bar{q} components in the nucleon and the N(1440) resonance

    Full text link
    The role of qqˉq\bar q components in the nucleon and the N(1440) resonance is studied by explicit coupling of the lowest positive parity qqqqqˉqqqq\bar q state to the qqqqqq components in the harmonic oscillator quark model. The lowest energy qqqqqˉqqqq\bar q component, where the 4-quark subsystem has the flavor-spin symmetry [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S, is close in energy to the lowest positive parity excitation of the nucleon in the qqqqqq quark model. The confining interaction leads to a strong mixing of the qqqqqˉqqqq\bar q system and the positive parity excited state of the qqqqqq system. This result is in line with the phenomenological indications for a two-component structure of the N(1440) resonance. The presence of substantial qqˉq\bar q components in the N(1440) can bring about a reconciliation of the constituent quark model with the large empirical decay width of the N(1440).Comment: Accepted for publication in Nucl. Phys.

    A microscopic NN to NN*(1440) potential

    Full text link
    By means of a NN to NN*(1440) transition potential derived in a parameter-free way from a quark-model based NN potential, we determine simultaneously the πNN(1440)\pi NN^*(1440) and σNN(1440)\sigma NN^*(1440) coupling constants. We also present a study of the target Roper excitation diagram contributing to the p(d,d)p(d,d') reaction.Comment: Talk presented at the Fourth International Conference on Perspectives in Hadronic Physics (ICTP, Trieste, Italy, May 2003). To appear in EPJA. 6 pages, 9 figures, needs svepj.clo and svjour.cl

    Saturation properties of helium drops from a Leading Order description

    Get PDF
    Saturation properties are directly linked to the short-range scale of the two-body interaction of the particles. The case of helium is particular, from one hand the two-body potential has a strong repulsion at short distances. On the other hand, the extremely weak binding of the helium dimer locates this system very close to the unitary limit allowing for a description based on an effective theory. At leading order of this theory a two- and a three-body term appear, each one characterized by a low energy constant. In a potential model this description corresponds to a soft potential model with a two-body term purely attractive plus a three-body term purely repulsive constructed to describe the dimer and trimer binding energies. Here we analyse the capability of this model to describe the saturation properties making a direct link between the low energy scale and the short-range correlations. We will show that the energy per particle, EN/NE_N/N, can be obtained with reasonable accuracy at leading order extending the validity of this approximation, characterizing universal behavior in few-boson systems close to the unitary limit, to the many-body system.Comment: 5 pages, 3 figure

    Fast generation of spin-squeezed states in bosonic Josephson junctions

    Get PDF
    We describe methods for fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions (BJJs). We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schr\"odinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. The best scaling of the squeezing parameter for large number of atoms N is \xi^2_S ~ 1/N.Comment: Improved and enlarged version, accepted at Phys. Rev.

    Single photo and electroproduction of pions at EBAC@JLAB

    Full text link
    Within the Excited Baryon Analysis Center we have performed a dynamical coupled-channels analysis of the available p(e,eπ)Np(e,e' \pi)N data in the region of WW \leq 1.6 GeV and Q2Q^2 \leq 1.45 (GeV/c)2^2. The channels included are γN\gamma^* N, πN\pi N, ηN\eta N, and ππN\pi\pi N which has πΔ\pi\Delta, ρN\rho N, and σN\sigma N components. With the hadronic parameters of the model determined in our previous investigations of πNπN\pi N\to \pi N reaction, we have found that the available data in the considered WW \leq 1.6 GeV region can be fitted well by only adjusting the bare γNN\gamma^* N \to N^* helicity amplitudes for the lowest NN^* states in P33P_{33}, P11P_{11}, S11S_{11} and D13D_{13} partial waves. The meson cloud effect, as required by the unitarity conditions, on the γNN\gamma^* N \to N^* form factors are examined.Comment: 6 pages, invited talk at NSTAR 2009, Beijing (China), 2009, to appear in the proceeding
    corecore