12 research outputs found

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    A multi-year assessment of blacklegged tick (Ixodes scapularis) population establishment and Lyme disease risk areas in Ottawa, Canada, 2017-2019.

    No full text
    Canadians face an emerging threat of Lyme disease due to the northward expansion of the tick vector, Ixodes scapularis. We evaluated the degree of I. scapularis population establishment and Borrelia burgdorferi occurrence in the city of Ottawa, Ontario, Canada from 2017-2019 using active surveillance at 28 sites. We used a field indicator tool developed by Clow et al. to determine the risk of I. scapularis establishment for each tick cohort at each site using the results of drag sampling. Based on results obtained with the field indicator tool, we assigned each site an ecological classification describing the pattern of tick colonization over two successive cohorts (cohort 1 was comprised of ticks collected in fall 2017 and spring 2018, and cohort 2 was collected in fall 2018 and spring 2019). Total annual site-specific I. scapularis density ranged from 0 to 16.3 ticks per person-hour. Sites with the highest density were located within the Greenbelt zone, in the suburban/rural areas in the western portion of the city of Ottawa, and along the Ottawa River; the lowest densities occurred at sites in the suburban/urban core. B. burgdorferi infection rates exhibited a similar spatial distribution pattern. Of the 23 sites for which data for two tick cohorts were available, 11 sites were classified as "high-stable", 4 were classified as "emerging", 2 were classified as "low-stable", and 6 were classified as "non-zero". B. burgdorferi-infected ticks were found at all high-stable sites, and at one emerging site. These findings suggest that high-stable sites pose a risk of Lyme disease exposure to the community as they have reproducing tick populations with consistent levels of B. burgdorferi infection. Continued surveillance for I. scapularis, B. burgdorferi, and range expansion of other tick species and emerging tick-borne pathogens is important to identify areas posing a high risk for human exposure to tick-borne pathogens in the face of ongoing climate change and urban expansion

    Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Québec, Canada.

    No full text
    Climate change is driving emergence and establishment of Ixodes scapularis, the main vector of Lyme disease in Québec, Canada. As for the black-legged tick, I. scapularis Say, global warming may also favor northward expansion of other species of medically important ticks. The aims of this study were to determine (1) current diversity and abundance of ticks of public health significance other than I. scapularis, (2) sex and age of the human population bitten by these ticks (3), and the seasonal and geographic pattern of their occurrence. From 2007 to 2015, twelve tick species other than I. scapularis were submitted in the Québec passive tick surveillance program. Of these 9243 ticks, 91.2% were Ixodes cookei, 4.1% were Dermacentor variabilis, 4.0% were Rhipicephalus sanguineus and 0.7% were Amblyomma americanum. The combined annual proportion of submitted I. cookei, D. variabilis, R. sanguineus and A. americanum ticks in passive surveillance rose from 6.1% in 2007 to 16.0% in 2015 and an annual growing trend was observed for each tick species. The number of municipalities where I. cookei ticks were acquired rose from 104 to 197 during the same period. Of the 862 people bitten by these ticks, 43.3% were I. cookei ticks removed from children aged < 10 years. These findings demonstrate the need for surveillance of all the tick species of medical importance in Québec, particularly because climate may increase their abundance and geographic ranges, increasing the risk to the public of the diseases they transmit

    Detection of municipalities at-risk of Lyme disease using passive surveillance of Ixodes scapularis as an early signal: A province-specific indicator in Canada.

    No full text
    Lyme disease, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi sensu stricto, which is transmitted by Ixodes scapularis in eastern Canada and Ixodes pacificus in western Canada. Recently, the northward range expansion of I. scapularis ticks, in south-eastern Canada, has resulted in a dramatic increase in the incidence of human Lyme disease. Detecting emerging areas of Lyme disease risk allows public health to target disease prevention efforts. We analysed passive tick surveillance data from Ontario and Manitoba to i) assess the relationship between the total numbers of I. scapularis submissions in passive surveillance from humans, and the number of human Lyme disease cases, and ii) develop province-specific acarological indicators of risk that can be used to generate surveillance-based risk maps. We also assessed associations between numbers of nymphal I. scapularis tick submissions only and Lyme disease case incidence. Using General Estimating Equation regression, the relationship between I. scapularis submissions (total numbers and numbers of nymphs only) in each census sub-division (CSD) and the number of reported Lyme disease cases was positively correlated and highly significant in the two provinces (P ≀ 0.001). The numbers of I. scapularis submissions over five years discriminated CSDs with ≄ 3 Lyme disease cases from those with < 3 cases with high accuracy when using total numbers of tick submission (Receiver Operating Characteristics area under the curve [AUC] = 0.89) and moderate accuracy (AUC = 0.78) when using nymphal tick submissions only. In Ontario the optimal cut-off point was a total 12 tick submissions from a CSD over five years (Sensitivity = 0.82, Specificity = 0.84), while in Manitoba the cut-off point was five ticks (Sensitivity = 0.71, Specificity = 0.79) suggesting regional variability of the risk of acquiring Lyme disease from an I. scapularis bite. The performances of the acarological indicators developed in this study for Ontario and Manitoba support the ability of passive tick surveillance to provide an early signal of the existence Lyme disease risk areas in regions where ticks and the pathogens they transmit are expanding their range

    Characteristics of HIV-2 and HIV-1/HIV-2 Dually Seropositive Adults in West Africa Presenting for Care and Antiretroviral Therapy: The IeDEA-West Africa HIV-2 Cohort Study.

    Get PDF
    HIV-2 is endemic in West Africa. There is a lack of evidence-based guidelines on the diagnosis, management and antiretroviral therapy (ART) for HIV-2 or HIV-1/HIV-2 dual infections. Because of these issues, we designed a West African collaborative cohort for HIV-2 infection within the framework of the International epidemiological Databases to Evaluate AIDS (IeDEA).We collected data on all HIV-2 and HIV-1/HIV-2 dually seropositive patients (both ARV-naive and starting ART) and followed-up in clinical centres in the IeDEA-WA network including a total of 13 clinics in five countries: Benin, Burkina-Faso Cîte d'Ivoire, Mali, and Senegal, in the West Africa region.Data was merged for 1,754 patients (56% female), including 1,021 HIV-2 infected patients (551 on ART) and 733 dually seropositive for both HIV-1 and HIV 2 (463 on ART). At ART initiation, the median age of HIV-2 patients was 45.3 years, IQR: (38.3-51.7) and 42.4 years, IQR (37.0-47.3) for dually seropositive patients (p = 0.048). Overall, 16.7% of HIV-2 patients on ART had an advanced clinical stage (WHO IV or CDC-C). The median CD4 count at the ART initiation is 166 cells/mm(3), IQR (83-247) among HIV-2 infected patients and 146 cells/mm(3), IQR (55-249) among dually seropositive patients. Overall, in ART-treated patients, the CD4 count increased 126 cells/mm(3) after 24 months on ART for HIV-2 patients and 169 cells/mm(3) for dually seropositive patients. Of 551 HIV-2 patients on ART, 5.8% died and 10.2% were lost to follow-up during the median time on ART of 2.4 years, IQR (0.7-4.3).This large multi-country study of HIV-2 and HIV-1/HIV-2 dual infection in West Africa suggests that routine clinical care is less than optimal and that management and treatment of HIV-2 could be further informed by ongoing studies and randomized clinical trials in this population
    corecore