58 research outputs found

    Controllable Spatial Array of Bessel-like Beams with Independent Axial Intensity Distributions for Laser Microprocessing

    Full text link
    Bessel beams generated via axicons are widely used for various applications like optical tweezers or laser microfabrication of transparent materials. The specific intensity profile having high aspect ratio of beam width and length in turn generates high aspect ratio void that resembles a needle. In contrast to commonly generated Bessel beam that has a fixed axial intensity distribution. We present a novel method to engineer an optical needle that can have an arbitrary axial intensity distribution via superposition of different cone angle Bessel beams. We analytically describe spatial spectra of an optical needle having arbitrary axial intensity distribution. We also demonstrate a superposition of independent optical needles and analyze the physical limitations to observe well separated optical needles as they are influence by mutual interference of the individual beams. In order to verify our theoretical and numerical results we generate controllable spatial arrays of individual beams with various numbers and spatial separations by altering a spectrum of incoming laser beam via spatial light modulator. Lastly, we numerically examine distortions caused by propagation through planar air-dielectric interface and show compensation method by appropriately modifying spectral masks

    Laser beam self-symmetrization in air in the multifilamentation regime

    Full text link
    We show experimental and numerical evidence of spontaneous self-symmetrization of focused laser beams experiencing multi-filamentation in air. The symmetrization effect is observed as the multiple filaments generated prior to focus approach the focal volume. This phenomenon is attributed to the nonlinear interactions amongst the different parts of the beam mediated by the optical Kerr effect, which leads to a symmetric redistribution of the wave vectors even when the beam consists of a bundle of many filaments.Comment: 9 pages, 7 figure

    Superfilamentation in air

    Full text link
    The interaction between a large number of laser filaments brought together using weak external focusing leads to the emergence of few filamentary structures reminiscent of standard filaments, but carrying a higher intensity. The resulting plasma is measured to be one order of magnitude denser than for short-scale filaments. This new propagation regime is dubbed superfilamentation. Numerical simulations of a nonlinear envelope equation provide good agreement with experiments.Comment: 5 pages, 4 figure

    Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    Full text link
    Acoustic signals generated by filamentation of ultrashort TW laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.Comment: 9 pages, 12 figure

    Study of filamentation with a high power high repetition rate ps laser at 1.03 µm

    No full text
    International audienceWe study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate.-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification

    Kūginių bangų nenuostovūs erdvėlaikiniai reiškiniai netiesinėse Kerro terpėse

    No full text
    Thesis consists of introduction, followed by five main chapters and conclusions. Introduction is devoted to the explanation of filamentation process. The mechanisms responsible for filament generation and evolution are explained first and various models of the filamentation are presented as well. The second chapter is devoted to the study on supercontinuum spectrum dependence on the initial pulse diameter. The chapter 4 is devoted to the study of the filamentation in scattering medium, and covers the performed experiment, explanation of new developed numerical scheme, and finally comparison of the numerical and experimental results. The chapter 5 describes the multifilamentation with elliptical beam. The role of the four wave mixing to the filaments periodicity is briefly explained. The periodicity dependence on the wave of intensity as well the evolution of multifilamentation is shown. Three dimensional study of the modulation instability during multifilamentation process is also presented in chapter 5. The last chapter 6 is devoted to the origin of the rogue wave statistics in supercontinuum generation, and comparison of the numeric results with experimental. At the end (chapter 7) the main conclusions of the current work are presented

    Conical wave triggered transient spatio-temporal effects in Kerr media

    No full text
    Thesis consists of introduction, followed by five main chapters and conclusions. Introduction is devoted to the explanation of filamentation process. The mechanisms responsible for filament generation and evolution are explained first and various models of the filamentation are presented as well. The second chapter is devoted to the study on supercontinuum spectrum dependence on the initial pulse diameter. The chapter 4 is devoted to the study of the filamentation in scattering medium, and covers the performed experiment, explanation of new developed numerical scheme, and finally comparison of the numerical and experimental results. The chapter 5 describes the multifilamentation with elliptical beam. The role of the four wave mixing to the filaments periodicity is briefly explained. The periodicity dependence on the wave of intensity as well the evolution of multifilamentation is shown. Three dimensional study of the modulation instability during multifilamentation process is also presented in chapter 5. The last chapter 6 is devoted to the origin of the rogue wave statistics in supercontinuum generation, and comparison of the numeric results with experimental. At the end (chapter 7) the main conclusions of the current work are presented

    Thermodynamical analysis of the formation of α-Si ring structures on silicon surface

    No full text
    Superficial modifications on silicon wafers produced by single-shot focused femtosecond laser irradiation having a 1030 nm wavelength and 300 fs pulse duration were experimentally and theoretically analyzed. The laser fluence window when the amorphous silicon phase develops, resulting in a ring-like modification shape, was experimentally estimated to be between 0.26 J/cm2 and 0.40 J/cm2 and was independent of the silicon dopant type and laser focusing conditions; however, the window was narrower when compared to results reported for shorter pulse durations. In addition, we present a simplified numerical model that can explain and predict the formation of these patterns based on the caloric coefficients of silicon and the energy distribution of the deposited material

    Ultra-short laser induced electron excitation/relaxation kinetics

    No full text
    Laser-induced electronic excitation, absorption and relaxation are the key issues in ultra-short laser interactions with dielectric materials. To numerically analyze these processes, several approaches are typically used. First, several detailed non-equilibrium models are based on a system of the detailed kinetic Boltzmann equations. Then, Fokker-Planck equations are also used. Finally, much more simplified rate equations are typically used in engineering modelling [1,2]. These models require additional sub-models to account for photo-ionization, electron-impact ionization, defect formation, recombination and other relaxation processes. In these sub-models, many parameters are rather unknown and are calculated based on additional considerations. One of such parameters is electron collision frequency [1-3], which was found to be crucial in determination of laser absorption and hence of laser damage.Boltzmann-based calculations are performed including all possible collisional processes. As a result, electron energy distributions are obtained allowing a better analysis of ultra-short laser interactions. The results reveal an effect of the laser-field on collision frequencies resulting in smaller free-carriers absorption than the one predicted by commonly used rate-equation models. Both electron-electron and electron-phonon relaxation are then examined, and the mean energy density of the electron sub-system is investigated as a function of laser fluence and pulse duration. Because efficient bond breaking requires energy, these calculations provide the required thresholds [4]. The dependency of the calculated damage threshold on laser pulse duration is compared with the available experimental data. The developed model is useful for many laser applications including high precision in laser treatment, laser-assisted atomic probe analysis, and for the development of new powerful laser systems.References[1] B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer. "Damage and ablation thresholds of fused-silica in femtosecond regime." Physical Review B 84 (9), 094104, (2011).[2]T.E. Itina, N.S. Shcheblanov, N. Electronic excitation in femtosecond laser interactions with wide-band-gap materials. Applied Physics A, 98(4), 769-775 (2010).[3] C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, F. Courvoisier. "Tubular filamentation for laser material processing. Scientific reports, 5 (2015).[4] N. S. Shcheblanov, T. E. Itina, Appl. Phys. Femtosecond laser interactions with dielectric materials: insights of a detailed modeling of electronic excitation and relaxation processes, Appl. Phys. A, 110(3), 579-583 (2013).Surface & Interface Science & Engineerin
    • …
    corecore