21 research outputs found

    Some social factors relevant to the stress-reducing effect of fighting in rats

    No full text

    Effect of AST on age-associated changes of vocal folds in a rat model.

    Get PDF
    [Objectives/Hypothesis]Reactive oxygen species (ROS) are associated with aging. Astaxanthin (AST) is a strong antioxidant and has been reported to prevent various ROS-induced diseases. In the current study, we investigated the effect of AST on age-associated histological and mRNA changes of vocal folds. [Study Design]Prospective animal experiment with control. [Methods]Six-month-old Sprague-Dawley rats were fed on a normal powder diet with 0.01% (w/w) AST (aged AST-treated group) or without AST (aged sham-treated group). After 12 months of feeding, the larynges were harvested for histology, immunohistochemical detection of 4-hydroxy-2-nonenal (4-HNE), and quantitative real-time polymerase chain reaction for basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF). Thirteen-week-old rats were used as a young control group (young group). [Results]The expression of 4-HNE, an oxidative stress marker, significantly increased in the two aged groups compared with the young group. Histological examination showed that the deposition of hyaluronic acid in the lamina propria (LP) was significantly reduced in the aged sham-treated group compared with the young group, but no significant difference was observed between the aged AST-treated group and the young group. There were no significant differences in the mRNA expression of bFGF and HGF between the aged AST-treated group and the young group, although the expression of these genes was significantly reduced in the aged sham-treated group as compared with the young group. [Conclusions]These results suggest that AST has the potential to attenuate age-associated changes of vocal folds

    Establishment of the experimental procedure for prediction of conjugation capacity in mutant UGT1A

    Get PDF
    UDP-glucuronosyltransferase 1A1 (UGT1A1) is an enzyme that is found in the endoplasmic reticulum membrane and can reportedly have a large number of amino acid substitutions that result in the reduction of glucuronidation capacity. For example, adverse drug reactions when patients receive CPT-11 (irinotecan) such as in cancer chemotherapy are caused by amino acid substitutions in UGT1A1. We previously found that the extent of the docking when the hydroxyl residue of bilirubin was oriented toward UDP-glucuronic acid correlated with in vitro conjugation capacity. In this study, we analyzed the conformation of mutant UGT1A1s by means of structural optimization with water and lipid bilayers instead of the optimization in vacuo that we used in our previous study. We then derived a mathematical model that can predict the conjugation capacities of mutant UGT1A1s by using results of substrate docking in silico and results of in vitro analysis of glucuronidation of acetaminophen and 17β-estradiol by UGT1A1s. This experimental procedure showed that the in silico conjugation capacities of other mutant UGT1A1s with bilirubin or SN-38 were similar to reported in vitro conjugation capacities. Our results suggest that this experimental procedure described herein can correctly predict the conjugation capacities of mutant UGT1A1s and any substrate
    corecore