1,095 research outputs found
Critical exponents of random XX and XY chains: Exact results via random walks
We study random XY and (dimerized) XX spin-1/2 quantum spin chains at their
quantum phase transition driven by the anisotropy and dimerization,
respectively. Using exact expressions for magnetization, correlation functions
and energy gap, obtained by the free fermion technique, the critical and
off-critical (Griffiths-McCoy) singularities are related to persistence
properties of random walks. In this way we determine exactly the decay
exponents for surface and bulk transverse and longitudinal correlations,
correlation length exponent and dynamical exponent.Comment: 4 pages RevTeX, 1 eps-figure include
Convergent Evidence from Animal and Human Studies
Schizophrenia is a highly heritable disorder with diverse mental and somatic
symptoms. The molecular mechanisms leading from genes to disease pathology in
schizophrenia remain largely unknown. Genome-wide association studies (GWASs)
have shown that common single-nucleotide polymorphisms associated with
specific diseases are enriched in the recognition sequences of transcription
factors that regulate physiological processes relevant to the disease. We have
used a “bottom-up” approach and tracked a developmental trajectory from
embryology to physiological processes and behavior and recognized that the
transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of
particular interest for schizophrenia. NKX2-1 is selectively expressed from
prenatal development to adulthood in the brain, thyroid gland, parathyroid
gland, lungs, skin, and enteric ganglia, and has key functions at the
interface of the brain, the endocrine-, and the immune system. In the
developing brain, NKX2-1-expressing progenitor cells differentiate into
distinct subclasses of forebrain GABAergic and cholinergic neurons,
astrocytes, and oligodendrocytes. The transcription factor is highly expressed
in mature limbic circuits related to context-dependent goal-directed patterns
of behavior, social interaction and reproduction, fear responses, responses to
light, and other homeostatic processes. It is essential for development and
mature function of the thyroid gland and the respiratory system, and is
involved in calcium metabolism and immune responses. NKX2-1 interacts with a
number of genes identified as susceptibility genes for schizophrenia. We
suggest that NKX2-1 may lie at the core of several dose dependent pathways
that are dysregulated in schizophrenia. We correlate the symptoms seen in
schizophrenia with the temporal and spatial activities of NKX2-1 in order to
highlight promising future research areas
Dust evolution in protoplanetary disks around Herbig Ae/Be stars - The Spitzer view
In this paper we present mid-infrared spectra of a comprehensive set of
Herbig Ae/Be stars observed with the Spitzer Space Telescope. The
signal-to-noise ratio of these spectra is very high, ranging between about a
hundred and several hundreds. During the analysis of these data we tested the
validity of standard protoplanetary dust models and studied grain growth and
crystal formation. On the basis of the analyzed spectra, the major constituents
of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with
olivine and pyroxene stoichiometry, crystalline forsterite and enstatite and
silica. No other solid state features, indicating other abundant dust species,
are present in the Spitzer spectra. Deviations of the synthetic spectra from
the observations are most likely related to grain shape effects and
uncertainties in the iron content of the dust grains. Our analysis revealed
that larger grains are more abundant in the disk atmosphere of flatter disks
than in that of flared disks, indicating that grain growth and sedimentation
decrease the disk flaring. We did not find, however, correlations between the
value of crystallinity and any of the investigated system parameters. Our
analysis shows that enstatite is more concentrated toward the warm inner disk
than forsterite, in contrast to predictions of equilibrium condensation models.
None of the three crystal formation mechanisms proposed so far can alone
explain all our findings. It is very likely that all three play at least some
role in the formation of crystalline silicates.Comment: 56 pages, 21 figures, accepted for publication in Ap
Revealing signatures of planets migrating in protoplanetary discs with ALMA multiwavelength observations
Recent observations show that rings and gaps are ubiquitous in protoplanetary
discs. These features are often interpreted as being due to the presence of
planets; however, the effect of planetary migration on the observed morphology
has not been investigated hitherto. In this work we investigate whether
multiwavelength mm/submm observations can detect signatures of planet
migration, using 2D dusty hydrodynamic simulations to model the structures
generated by migrating planets and synthesising ALMA continuum observations at
0.85 and 3 mm. We identify three possible morphologies for a migrating planet:
a slowly migrating planet is associated with a single ring outside the planet's
orbit, a rapidly migrating planet is associated with a single ring inside the
planet's orbit while a planet migrating at intermediate speed generates one
ring on each side of the planet's orbit. We argue that multiwavelength data can
distinguish multiple rings produced by a migrating planet from other scenarios
for creating multiple rings, such as multiple planets or discs with low
viscosity. The signature of migration is that the outer ring has a lower
spectral index, due to larger dust grains being trapped there. Of the recent
ALMA observations revealing protoplanetary discs with multiple rings and gaps,
we suggest that Elias 24 is the best candidate for a planet migrating in the
intermediate speed regime.This work has been supported by the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG. This work was performed using the DiRAC Data Intensive service at Leicester, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1. DiRAC is part of the National e-Infrastructure. G.R. acknowledges support from the Netherlands Organisation for Scientific Research (NWO, program number 016.Veni.192.233). F.M. acknowledges support from the Royal Society Dorothy Hodgkin Fellowship
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Moment instabilities in multidimensional systems with noise
We present a systematic study of moment evolution in multidimensional
stochastic difference systems, focusing on characterizing systems whose
low-order moments diverge in the neighborhood of a stable fixed point. We
consider systems with a simple, dominant eigenvalue and stationary, white
noise. When the noise is small, we obtain general expressions for the
approximate asymptotic distribution and moment Lyapunov exponents. In the case
of larger noise, the second moment is calculated using a different approach,
which gives an exact result for some types of noise. We analyze the dependence
of the moments on the system's dimension, relevant system properties, the form
of the noise, and the magnitude of the noise. We determine a critical value for
noise strength, as a function of the unperturbed system's convergence rate,
above which the second moment diverges and large fluctuations are likely.
Analytical results are validated by numerical simulations. We show that our
results cannot be extended to the continuous time limit except in certain
special cases.Comment: 21 pages, 15 figure
Radiative lifetime measurements of rubidium Rydberg states
We have measured the radiative lifetimes of ns, np and nd Rydberg states of
rubidium in the range 28 < n < 45. To enable long-lived states to be measured,
our experiment uses slow-moving Rb atoms in a magneto-optical trap (MOT). Two
experimental techniques have been adopted to reduce random and systematic
errors. First, a narrow-bandwidth pulsed laser is used to excite the target
Rydberg state, resulting in minimal shot-to-shot variation in the initial state
population. Second, we monitor the target state population as a function of
time delay from the laser pulse using a short-duration, millimetre-wave pulse
that is resonant with a one- or two-photon transition. We then selectively
field ionize the monitor state, and detect the resulting electrons with a
micro-channel plate. This signal is an accurate mirror of the target state
population, and is uncontaminated by contributions from other states which are
populated by black body radiation. Our results are generally consistent with
other recent experimental results obtained using a less sensitive method, and
are also in excellent agreement with theory.Comment: 27 pages,6 figure
May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review
The positive effects of physical activity are countless, not only on the cardiovascular system but on health in general. However, some studies suggest a U-shape relationship between exercise volume and effects on the cardiovascular system. On the basis of this perspective, moderate-dose exercise would be beneficial compared to a sedentary lifestyle, while very high-dose physical activity would paradoxically be detrimental. We reviewed the available evidence on the potential adverse effects of very intense, prolonged exercise on the cardiovascular system, both acute and chronic, in healthy athletes without pre-existing cardiovascular conditions. We found that endurance sports activities may cause reversible electrocardiographic changes, ventricular dysfunction, and troponin elevation with complete recovery within a few days. The theory that repeated bouts of acute stress on the heart may lead to chronic myocardial damage remains to be demonstrated. However, male veteran athletes with a long sports career show an increased prevalence of cardiovascular abnormalities such as electrical conduction delay, atrial fibrillation, myocardial fibrosis, and coronary calcifications compared to non-athletes. It must be underlined that the cause–effect relationship between such abnormalities and the exercise and, most importantly, the prognostic relevance of such findings remains to be established
On the interplay between flaring and shadowing in disks around Herbig Ae/Be stars
Based on the SED, Herbig stars have been categorized into two observational
groups, reflecting their overall disk structure: group I members have disks
with a higher degree of flaring than their group II counterparts. We
investigate the 5-35 um Spitzer IRS spectra of a sample of 13 group I sources
and 20 group II sources. We focus on the continuum emission to study the
underlying disk geometry. We have determined the [30/13.5] and [13.5/7]
continuum flux ratios. The 7-um flux excess with respect to the stellar
photosphere is measured, as a marker for the strength of the near-IR emission
produced by the inner disk. We have compared our data to self-consistent
passive-disk model spectra, for which the same quantities were derived. We
confirm the literature result that the difference in continuum emission between
group I and II sources can largely be explained by a different amount of small
dust grains. However, we report a strong correlation between the [30/13.5] and
[13.5/7] flux ratios for Meeus group II sources. Moreover, the [30/13.5] flux
ratio decreases with increasing 7-um excess for all targets in the sample. To
explain these correlations with the models, we need to introduce an artificial
scaling factor for the inner disk height. In roughly 50% of the Herbig Ae/Be
stars in our sample, the inner disk must be inflated by a factor 2 to 3 beyond
what hydrostatic calculations predict. The total disk mass in small dust grains
determines the degree of flaring. We conclude, however, that for any given disk
mass in small dust grains, the shadowing of the outer (tens of AU) disk is
determined by the scale height of the inner disk (1 AU). The inner disk
partially obscures the outer disk, reducing the disk surface temperature. Here,
for the first time, we prove these effects observationally.Comment: 4 pages, 3 figures, accepted by A&
Experimental Control and Characterization of Autophagy in Drosophila
Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy
- …