60 research outputs found

    A guide to scientific writing preparing an article and a grant proposal in the biosciences

    Get PDF

    Tieteellisen kirjoittamisen opas julkaisun ja apurahahakemuksen laatiminen biotieteissä

    Get PDF

    Short and long-term effects of hVEGF-A(165) in cre-activated transgenic mice

    Get PDF
    We have generated a transgenic mouse where hVEGF-A(165) expression has been silenced with loxP-STOP fragment, and we used this model to study the effects of hVEGF-A(165) over-expression in mice after systemic adenovirus mediated Cre-gene transfer. Unlike previous conventional transgenic models, this model leads to the expression of hVEGF-A(165) in only a low number of cells in the target tissues in adult mice. Levels of hVEGF-A(165) expression were moderate and morphological changes were found mainly in the liver, showing typical signs of active angiogenesis. Most mice were healthy without any major consequences up to 18 months after the activation of hVEGF-A(165) expression. However, one mouse with a high plasma hVEGF-A(165) level died spontaneously because of bleeding into abdominal cavity and having liver hemangioma, haemorrhagic paratubarian cystic lesions and spleen peliosis. Also, two mice developed malignant tumors (hepatocellular carcinoma and lung adenocarcinoma), which were not seen in control mice. We conclude that long-term uncontrolled hVEGF-A(165) expression in only a limited number of target cells in adult mice can be associated with pathological changes, including possible formation of malignant tumors and uncontrolled bleeding in target tissues. These findings have implications for the design of long-term clinical trials using hVEGF-A(165) gene and protein.We have generated a transgenic mouse where hVEGF-A(165) expression has been silenced with loxP-STOP fragment, and we used this model to study the effects of hVEGF-A(165) over-expression in mice after systemic adenovirus mediated Cre-gene transfer. Unlike previous conventional transgenic models, this model leads to the expression of hVEGF-A(165) in only a low number of cells in the target tissues in adult mice. Levels of hVEGF-A(165) expression were moderate and morphological changes were found mainly in the liver, showing typical signs of active angiogenesis. Most mice were healthy without any major consequences up to 18 months after the activation of hVEGF-A(165) expression. However, one mouse with a high plasma hVEGF-A(165) level died spontaneously because of bleeding into abdominal cavity and having liver hemangioma, haemorrhagic paratubarian cystic lesions and spleen peliosis. Also, two mice developed malignant tumors (hepatocellular carcinoma and lung adenocarcinoma), which were not seen in control mice. We conclude that long-term uncontrolled hVEGF-A(165) expression in only a limited number of target cells in adult mice can be associated with pathological changes, including possible formation of malignant tumors and uncontrolled bleeding in target tissues. These findings have implications for the design of long-term clinical trials using hVEGF-A(165) gene and protein.We have generated a transgenic mouse where hVEGF-A(165) expression has been silenced with loxP-STOP fragment, and we used this model to study the effects of hVEGF-A(165) over-expression in mice after systemic adenovirus mediated Cre-gene transfer. Unlike previous conventional transgenic models, this model leads to the expression of hVEGF-A(165) in only a low number of cells in the target tissues in adult mice. Levels of hVEGF-A(165) expression were moderate and morphological changes were found mainly in the liver, showing typical signs of active angiogenesis. Most mice were healthy without any major consequences up to 18 months after the activation of hVEGF-A(165) expression. However, one mouse with a high plasma hVEGF-A(165) level died spontaneously because of bleeding into abdominal cavity and having liver hemangioma, haemorrhagic paratubarian cystic lesions and spleen peliosis. Also, two mice developed malignant tumors (hepatocellular carcinoma and lung adenocarcinoma), which were not seen in control mice. We conclude that long-term uncontrolled hVEGF-A(165) expression in only a limited number of target cells in adult mice can be associated with pathological changes, including possible formation of malignant tumors and uncontrolled bleeding in target tissues. These findings have implications for the design of long-term clinical trials using hVEGF-A(165) gene and protein.Peer reviewe

    Inhibition of DNA and Protein Synthesis in UV-Irradiated Mouse Skin by 2-Difluoromethylornithine, Methylglyoxal bis(Guanylhydrazone), and Their Combination

    Get PDF
    Exposure of mouse skin to UVB irradiation greatly enhanced the biosynthesis and accumulation of putrescine and spermidine before or concomitantly with stimulation of epidermal macromolecular (DNA and protein) synthesis. Topical treatment of UV-exposed skin with 2 inhibitors of polyamine biosynthesis, 2-difluorometh- ylornithine (DFMO) and methyiglyoxal bis(guanyl-hydrazone) (MGBG) prevented the enhanced epidermal accumulation of polyamines, especially spermidine, and also inhibited the incorporation of radioactive precursors into DNA and protein. When applied in combination, these 2 antimetabolites of polyamines produced an inhibition of macromolecular synthesis that was at least additive: [3H]thymidine incorporation decreased by 80% and [14C]leucine incorporation by 44% as compared with the UVB-irradiated control mice. A slight decrease in the ratio of [3H]histidine/[14C]leucine incorporation indicated that protein synthesis of the differentiating cell layers was also affected by the inhibitors. The effects of the combined DFMO and MGBG treatment were partially reversed by concomitant topical application of spermidine

    Chronic exposure to dexamethasone induces hypomethylation of ornithine decarboxylase genes in a human myeloma cell line

    Get PDF
    AbstractChronic exposure of a human myeloma cell line to dexamethasone resulted in a selection of cells resistant to the growth-inhibitory action of the glucocorticoid. Upon acute exposure of the parental myeloma cells to dexamethasone growth inhibition was associated with depression of ornithine decarboxylase (ODC, EC 4.1.1.17) activity. However, in cells adapted to grow in the presence of micromolar concentrations of dexamethasone, ODC activity was fully comparable to that in the parental cells. Restriction enzyme analyses with the two isoschizomers HpaII and MspI as well as with the methylation-sensitive C⨍oI, indicated that the otherwise heavily methylated ODC gene(s) were rendered hypomethylated in the myeloma cells resistant to dexamethasone. This hypomethylation within and/or around ODC genes was associated with a 2–4-fold enhancement of accumulation of ODC mRNA
    • …
    corecore