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Chronic exposure of a human myeloma cell line to dexamethasone resulted in a selection of cells resistant 
to the growth-inhibitory action of the glucocorticoid. Upon acute exposure of the parental myeloma cells 
to dexamethasone growth inhibition was associated with depression of ornithine decarboxylase (ODC, EC 
4. I. 1.17) activity. However, in cells adapted to grow in the presence of micromolar concentrations of dexa- 
methasone, ODC activity was fully comparable to that in the parental cells. Restriction enzyme analyses 
with the two isoschizomers HpaII and MspI as well as with the methylation-sensitive CfoI, indicated that 
the otherwise heavily methylated ODC gene(s) were rendered hypomethylated in the myeloma cells resistant 
to dexamethasone. This hypomethylation within and/or around ODC genes was associated with a 2~-fold 

enhancement of accumulation of ODC mRNA. 
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1. I N T R O D U C T I O N  

Ornithine decarboxylase (ODC) belongs to those 
enzymes whose activity is not only strikingly 
stimulated by almost any growth-promoting 
stimulus, but is likewise profoundly depressed 
upon exposure of  cells or tissues to catabolic or 
growth-inhibitory agents. One of the best examples 
of  the tissue-specific responses of  ODC is the ac- 
tion of  glucocorticoids. Natural  glucocorticoids 
and their synthetic congeners, such as dex- 
amethasone,  elicit large increases in ODC activity 
in parenchymal organs, such as in liver and kidney, 
while profoundly depressing the enzyme activity in 
tissues and cells of  lymphatic origin [1]. 

Although the molecular mechanisms of these 
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tissue-specific responses are not known, it appears 
obvious that they are in line with the generally ac- 
cepted view that ODC is a strictly growth-related 
enzyme. 

Even though many controversies exist regarding 
the importance of  gene methylation for its 
transcriptional activity [2], there are many recent 
examples indicating that hypomethylat ion in or 
around a given gene is associated with enhanced 
expression of  the gene [3-7]. We recently found 
that a distinct methylation polymorphism exists 
between different human tumor  cell lines [8]. In 
comparison with human leukemia cells, the Sultan 
myeloma cells appeared to be much more 
methylated [8]. Here, we report that chronic ex- 
posure to dexamethasone renders human myeloma 
cells resistant to the growth-inhibitory actions of  
the glucocorticoid. This resistance was associated 
with hypomethylat ion of  ODC genes and enhanced 
accumulation of the message of the enzyme. 
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2. MATERIALS AND METHODS 

2.1. Cell cultures and selection of  dexamethasone- 
resistant cells 

The human myeloma cell line (Sultan) was 
originally obtained from an IgG-myeloma patient. 
The myeloma cells were grown in RPMI 1640 
medium supplemented with 5% (v/v) pooled 
human serum (Transfusion Service, Finnish Red 
Cross, Helsinki) and antibiotics (penicillin and 
streptomycin). The cells were exposed to increasing 
concentrations of  dexamethasone (10-1000 nM) 
over a period of  several weeks resulting in the 
generation of  a cell population readily growing in 
the presence of 1/zM dexamethasone. 

2.2. Chemicals 
Dexamethasone was obtained from Sigma (St. 

Louis, MO). [32p]dCTP (spec. act. >400 Ci/  
mmol) was purchased from Amersham Interna- 
tional (Amersham, England). The restriction en- 
zymes EcoRI and HpaII were purchased from 
Amersham International, and MspI and CfoI from 
Boehringer Mannheim. 

2.3. Preparative and analytical methods 
Genomic DNA was isolated and extracted by the 

method of Blin and Stafford [9]. The DNA was 
digested with restriction enzymes according to the 
instruction of  the suppliers. The restriction 
fragments were electrophoresed in 0.9% agarose 
gels, transferred to nitrocellulose filters [10] and 
hybridized with nick-translated [11] pODC10/2H 
complementary to the human ODC mRNA [12]. 
The specific activity of  the probe was 1 × 
10 s cpm//zg. 

For cyto-dot analyses of  the ODC mRNA levels, 
the cells were lysed in 10 mM Tris-HC1, 1 mM 
EDTA (pH 7.5) buffer containing 1% NP-40. The 
lysates were applied with a manifold (Bethesda 
Research Laboratories) to an mRNA affinity 
paper (Hybond-mAP,  Amersham) using the 
loading and washing conditions described in [13]. 
The affinity paper was then hybridized with nick- 
translated pODC10/2H and autoradiographed. 

ODC activity was assayed by the method of  
J~inne and Williams-Ashman [14]. 

3. RESULTS 

As shown in fig.l ,  dexamethasone clearly in- 
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Fig. 1. Growth of Sultan myeloma cells in the absence 
and presence of dexamethasone. The parental cell line 
was grown in the absence (control) or in the presence of 
1/zM dexamethasone (dexamethasone, acute) added at 
time point zero. The dexamethasone-resistant cell line 
(dexamethasone, chronic) was grown in the presence of 
the glucocorticoid for several months prior to the 
experiment. Each time point represents duplicate 

cultures. 

hibited the growth of the human myeloma cells. 
However, cells chronically exposed to the 
glucocorticoid grew at least as fast as the parental 
cells (fig. 1). Growth inhibition in response to acute 
exposure to 1/~M dexamethasone, although not 
complete, was highly reproducible, varying be- 
tween 40 and 60%. The antiproliferative effect was 
usually apparent after an exposure of 24 h. In 
another experiment, the increase in cell density be- 
tween 24 and 48 h was 0.756 +_ 0.032 × 106/ml in 
untreated cells while in cultures exposed to 1/zM 
dexamethasone the cell number increased to 0.507 
+ 0.0012 × 106/ml (p < 0.001). The ODC activity, 
as measured 24 h after the change to flesh 
medium, was 59.4 and 55.4 pmol/106 cells in 
parental cells and in cells chronically exposed to 
dexamethasone respectively, and 32.8 pmol/106 
cells in cells following acute exposure to the 
glucocorticoid. 

Restriction enzyme analyses of  genomic DNA 
isolated from the parental Sultan cells and 
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Fig.2. Restriction enzyme analysis of genomic DNA 
isolated from the parental cells or from dexamethasone- 
resistant cells. Large molecular mass genomic DNA 
(10/zg) from parental cells (lanes 1,3,5) or 
dexamethasone-resistant cells (lanes 2,4,6) was digested 
with HpalI (lanes 1,2), with CfoI (lanes 3,4) or with 
Mspl (lanes 5,6). The fragments were size fractionated 
by electrophoresis, blotted and hybridized with 
pODC10/2H as described in section 2. The molecular 
mass markers are shown to the right, kbp, kilobase 
pairs. The arrows indicate new fragments that appeared. 

dexamethasone-resistant cells revealed an identical 
restriction pattern after EcoRI digestion (not 
shown). However, when the digestion was per- 
formed with the methylation-sensitive HpalI and 
CfoI, the former cleaving at CCGG and the latter 
at GCGC provided the internal cytosines are 
unmethylated, it became evident that the chronic 
exposure to the glucocorticoid resulted in distinct 
hypomethylation in (and around?) ODC genes. 
Lanes 1 (parental cells) and 2 (dexamethasone- 
resistant cells) in fig.2 represent genomic DNA 
digested with HpalI and lanes 3 (parental cells) and 
4 (dexamethasone-resistant cells) genomic DNA 
digested with CfoI. As shown in fig.2, the genes 
were clearly less methylated in the dexamethasone- 
resistant cells (the arrows indicate the new 
fragments that appeared), yet the digestion with 
the methylation-insensitive isoschizomer (MspI) of  
HpalI [15] resulted in an identical digestion pat- 
tern (lanes 5 and 6 in fig.2). 

Fig.3 depicts pODC10/2H with the cleavage 
sites for HpalI and CfoI. By using different probes 
prepared from the plasmid we found that the 
generation of  a 2.4 kbp fragment from genomic 
DNA by HpalI (fig.2, lane 2) indicated that one of  
the centrally located ttpalI (fig.3) sites was 
rendered demethylated. Moreover, our unpub- 
lished experiments have indicated that the 
minimum size of  human ODC gene is about 5 kbp, 
thus suggesting that the fragment of  about 4 kbp 
generated by CfoI in dexamethasone-resistant ceils 
(fig.2, lane 4) resulted from demethylation of  a 
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Fig.3. Partial restriction map (with HpalI and CfoI sites) of the human pODC10/2H. The filled boxes represent pBR322 
sequences, kbp, kilobase pairs. 
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Fig.4. Cyto-dot analysis of ornithine decarboxylase 
mRNA levels in parental cells and dexamethasone- 
resistant cells. Parental cells (C) and cells chronically 
exposed to dexamethasone (D) were lysed and applied to 
an mRNA affinity paper as described in section 2. The 

number of cells applied is shown to the right. 

cleavage site within the ODC gene. Accordingly, it 
is unlikely that  the observed changes represent any 
overall genomic demethylation. The latter view 
was also supported by the identical pattern of  
ethidium bromide-stained HpaII and CfoI digests 
of  genomic DNA obtained f rom sensitive and 
resistant cell lines. 

Hypomethyla t ion was associated with chronic 
exposure to the glucocorticoid, as acute exposure 
to dexamethasone (48 h) induced no changes in the 
cleavage pattern by HpaII or CfoI (not shown). 

A cyto-dot analysis performed on polyuridy- 
lated mRNA affinity paper  (fig.4), revealed that 
the accumulation of  ODC m R N A  was enhanced by 
a factor of  2 - 4  in the dexamethasone-resistant 
cells (column D). Thus in this case, the apparent  
hypomethylat ion of  ODC genes led to an increased 
accumulation of  the message of  the enzyme. 

4. DISCUSSION 

In connection with analyses involving several 
human-derived cells and cell lines, we found that 
there exists a methylation polymorphism regarding 
ODC genes among different cells [8]. In com- 
parison with human leukemia cells or even with 
peripheral mononuclear  leukocytes, the Sultan 
myeloma cells appeared to be heavily methylated 
[8]. In these studies, we did not at tempt to cot- 

relate the extent of  hypomethylat ion with the ex- 
pression rate of  the gene. In the case of  these 
dexamethasone-resistant cells there seems to be a 
link between hypomethylat ion of  the gene(s) and 
the amount  of  the respective mRNA.  Of  course, 
there is no evidence to claim that these human 
myeloma cells acquire resistance to dexamethasone 
by hypomethylat ion of  ODC genes resulting in 
enhanced expression of  the genes. 

Many, especially very recent observations sug- 
gest that hypomethylat ion in or around a given 
gene enhances its activity. Thus methylation con- 
trols the inducibility of  mouse metallothionein-I 
gene [4], the expression of  an interferon gene [16], 
rat growth hormone gene expression [6] and gene 
activity of  the human #-globin cluster [7], to men- 
tion just a few examples. However,  many  examples 
with no correlation between gene methylation and 
activity are also available [2]. 

More relevant to the present findings are the 
reports indicating that steroid hormones can bring 
about  changes in gene methylation. It has been 
shown that estrogen induces demethylation at the 
5 '  -end of  the chicken vitellogenin gene irrespective 
of  whether the gene is expressed [17]. Similarly, a 
mouse m a m m a r y  tumor  cell line which exhibits a 
positive proliferative response to androgens ap- 
pears to lose the response upon prolonged culture 
in the absence of  the steroid [18]. The loss of  this 
proliferative response is accompanied by increased 
methylation of mouse m a m m a r y  tumor  virus 
(MMTV)-related sequences [18]. 

Even more relevant to the present results are the 
findings of  Mermod et al. [19] who found that the 
selection of  a dexamethasone-resistant mouse lym- 
phoid cell line (in the presence of  10#M dex- 
amethasone) was specifically associated with 
demethylation of  the 5 ' - long  terminal repeats of  
MMTV in the absence of  any MMTV genome rear- 
rangements or overall genome demethylation. 

The fact that dexamethasone induces hypo- 
methylation of  human ODC genes may also serve 
as an explanation for our recent findings indicating 
that ODC genes in a human B cell leukemia line as 
well as in mononuclear  leukocytes obtained f rom 
leukemia patients are less methylated than those in 
mononuclear  leukocytes obtained f rom healthy 
volunteers [8]. The latter finding thus may indicate 
a development of  glucocorticoid-resistant clones as 
a result of  a recent treatment with glucocorticoids. 
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