314 research outputs found

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria

    Get PDF
    Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities

    Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    Get PDF
    Using tadpole inproved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios \chi_0=4,6,10 and inverse lattice spacing in the range a_s^{-1}=660-840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size, L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L=\infty. The renormalized anisotropy \chi_R was measured using both the torelon dispersion relation and the sideways potential method. We found good agreement between these different approaches. Any discrepancy was at worst 3-4% which is consistent with the effect of lattice artifacts that for the torelon we estimate as O(\a_Sa_s^2/R^2) where R is the flux-tube radius. We also present some new data that suggests that rotational invariance is established more accurately for the mean-link action than the plaquette action.Comment: LaTeX 18 pages including 7 figure

    Heavy Quarkonia from Anisotropic and Isotropic Lattices

    Get PDF
    We report on recent results for the spectrum of heavy quarkonia. Using coarse and anisotropic lattices we achieved an unprecedented control over statistical and systematic errors for higher excited states such as exotic hybrid states. In a parallel study on isotropic lattices we also investigate the effect of two dynamical flavours on the spin structure of charmonium and bottomonium for several symmetric lattices.Comment: LATTICE'99 (heavy quarks), 3 pages, 3 figure

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    Theoretical study of the dynamic structure factor of superfluid 4He

    Full text link
    We study the dynamic structure factor S(q,ω)S(\vec{q},\omega) of superfluid 4He at zero temperature in the roton momentum region and beyond using field-theoretical Green's function techniques. We start from the Gavoret-Nozi\`{e}res two-particle propagator and introduce the concept of quasiparticles. We treat the residual (weak) interaction between quasiparticles as being local in coordinate space and weakly energy dependent. Our quasiparticle model explicitly incorporates the Bose-Einstein condensate. A complete formula for the dynamic susceptibility, which is related to S(q,ω)S (\vec{q},\omega), is derived. The structure factor is numerically calculated in a self-consistent way in the special case of a momentum independent interaction between quasiparticles. Results are compared with experiment and other theoretical approaches.Comment: 17 pages, 16 figure

    Casimir scaling as a test of QCD vacuum

    Get PDF
    Recent accurate measurements of static potentials between sources in various representations of the gauge group SU(3) performed by G.Bali provide a crucial test of the QCD vacuum models and different approaches to confinement. The Casimir scaling of the potential observed for all measured distances implies strong suppression of higher cumulant contributions. The consequences for the instanton vacuum model and the spectrum of the QCD string are also discussed.Comment: LaTeX, 15 pages, 1 figur

    Heavy Quark Potentials in Quenched QCD at High Temperature

    Get PDF
    Heavy quark potentials are investigated at high temperatures. The temperature range covered by the analysis extends from TT values just below the deconfinement temperature up to about 4Tc4 T_c in the deconfined phase. We simulated the pure gauge sector of QCD on lattices with temporal extents of 4, 6 and 8 with spatial volumes of 32332^3. On the smallest lattice a tree level improved action was employed while in the other two cases the standard Wilson action was used. Below TcT_c we find a temperature dependent logarithmic term contributing to the confinement potential and observe a string tension which decreases with rising temperature but retains a finite value at the deconfinement transition. Above TcT_c the potential is Debye-screened, however simple perturbative predictions do not apply.Comment: 20 pages, 9 figure
    corecore