675 research outputs found
The representation of speech in a nonlinear auditory model: time-domain analysis of simulated auditory-nerve firing patterns
A nonlinear auditory model is appraised in terms of its ability to encode speech formant frequencies in the fine time structure of its output. It is demonstrated that groups of model auditory nerve (AN) fibres with similar interpeak intervals accurately encode the resonances of synthetic three-formant syllables, in close agreement with physiological data. Acoustic features are derived from the interpeak intervals and used as the input to a hidden Markov model-based automatic speech recognition system. In a digits-in-noise recognition task, interval-based features gave a better performance than features based on AN firing rate at every signal-to-noise ratio tested
High-Temperature Optical Sensor
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable
Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: A placebo-controlled double-blind trial
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK
Microplastics are widespread throughout aquatic environments. However, there is currently insufficient understanding of the factors influencing ingestion of microplastics by organisms, especially higher predators such as fish. In this study we link ingestion of microplastics by the roach Rutilus rutilus, within the non-tidal part of the River Thames, to exposure and physiological factors. Microplastics were found within the gut contents of roach from six out of seven sampling sites. Of sampled fish, 33% contained at least one microplastic particle. The majority of particles were fibres (75%), with fragments and films also seen (22.7% and 2.3% respectively). Polymers identified were polyethylene, polypropylene and polyester, in addition to a synthetic dye. The maximum number of ingested microplastic particles for individual fish was strongly correlated to exposure (based on distance from the source of the river). Additionally, at a given exposure, the size of fish correlated with the actual quantity of microplastics in the gut. Larger (mainly female) fish were more likely to ingest the maximum possible number of particles than smaller (mainly male) fish. This study is the first to show microplastic ingestion within freshwater fish in the UK and provides valuable new evidence of the factors influencing ingestion that can be used to inform future studies on exposure and hazard of microplastics to fish
Survival is influenced by approaches to local treatment of Ewing sarcoma within an international randomised controlled trial: analysis of EICESS-92
Background: Two national clinical trial groups, United Kingdom Children's Cancer and Leukaemia Group (CCLG) and the German Paediatric Oncology and Haematology Group (GPOH) together undertook a randomised trial, EICESS-92, which addressed chemotherapy options for Ewing's sarcoma. We sought the causes of unexpected survival differences between the study groups. Methods: 647 patients were randomised. Cox regression analyses were used to compare event-free survival (EFS) and overall survival (OS) between the two study groups. Results: 5-year EFS rates were 43% (95% CI 36-50%) and 57% (95% CI 52-62) in the CCLG and GPOH patients, respectively; corresponding 5-year OS rates were 52% (95% CI 45-59%) and 66% (95% CI 61-71). CCLG patients were less likely to have both surgery and radiotherapy (18 vs. 59%), and more likely to have a single local therapy modality compared to the GPOH patients (72 vs. 35%). Forty-five percent of GPOH patients had pre-operative radiotherapy compared to 3% of CCLG patients. In the CCLG group local recurrence (either with or without metastases) was the first event in 22% of patients compared with 7% in the GPOH group. After allowing for the effects of age, metastases, primary site, histology and local treatment modality, the risk of an EFS event was 44% greater in the CCLG cohort (95% CI 10-89%, p = 0.009), and the risk of dying was 30% greater, but not statistically significant (95% CI 3-74%, p = 0.08). Conclusions: Unexpected differences in EFS and OS occurred between two patient cohorts recruited within an international randomised trial. Failure to select or deliver appropriate local treatment modalities for Ewing's sarcoma may compromise chances of cure.Trial registration Supported by Deutsche Krebshilfe (Grants No. DKH M43/92/Jü2 and DKH 70-2551 Jü3), and European Union Biomedicine and Health Programme (Grants No. BMH1-CT92-1341 and BMH4-983956), and Cancer Research United Kingdom. Clinical trial information can be found for the following: NCT0000251
Patient-reported outcome instruments used in immune-checkpoint inhibitor clinical trials in oncology: a systematic review.
Immune-checkpoint inhibitors (ICI) have shown significant benefits for overall survival across various cancer types. Patient-reported outcomes (PROs) are assessed in clinical trials as a measure of efficacy. However, it remains unclear to what extent current PRO instruments capture symptoms specific to ICI toxicities. We conducted a systematic review to identify the use and content validity of PRO instruments in ICI clinical trials in oncology.
Literature was retrieved from PubMed, Embase, PsycINFO, Medline and CINAHL databases. Articles presenting ICI clinical trials' PRO results, clinical trial study protocols, and conference abstracts stating the use of PRO measures were assessed. We evaluated the validity of identified instruments by comparing their symptom-related content with the adverse events reported in each ICI clinical trial.
From database inception until January 2020, we identified 191 ICI clinical trials stating the use of PRO measures of which 26 published PRO results. The cancer-specific EORTC QLQ-C30 and the generic EQ-5D questionnaires were the most widely used instruments, often in combination with disease-specific PROs. Instruments used to report PRO symptom-related toxicities covered 45% of the most frequently reported AEs, whereas 23% of AEs were partially covered and 29% were not covered at all. Of non-covered AEs, 59% referred to the dermatologic system. Partially covered AEs related to endocrine and specific types of pain.
Despite the high frequency of symptom-related toxicities related to ICI, these events are only partially covered (or not addressed) by current PRO instruments, even when combined. Further research is needed to develop new strategies to tailor PRO instruments to specific ICI toxicities
Alterations of immune response of non-small lung cancer with azacytidine
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade
Portable Unit for Metabolic Analysis
The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas
Portable Unit for Metabolic Analysis
The Portable Unit for Metabolic Analysis measures human metabolic function. The compact invention attaches to the face of a subject and it is able to record highly time-resolved measurements of air temperature and pressure, flow rates during inhalation and exhalation, and oxygen and carbon dioxide partial pressure. The device is capable of `breath-by-breath` analysis and `within-breath` analysis at high temporal resolution
- …