50 research outputs found

    mRNA Structural Constraints on EBNA1 Synthesis Impact on In Vivo Antigen Presentation and Early Priming of CD8(+) T Cells

    Get PDF
    Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1) comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8(+) T cell epitopes by CD11c(+) dendritic cells in draining lymph nodes and early priming of antigen-specific CD8(+) T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8(+) T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection

    Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes

    Get PDF
    A significant proportion of endogenously processed CD8+ T cell epitopes are derived from newly synthesized proteins and rapidly degrading polypeptides (RDPs). It has been hypothesized that the generation of rapidly degrading polypeptides and CD8+ T cell epitopes from these RDP precursors may be influenced by the efficiency of protein translation. Here we address this hypothesis by using the Epstein-Barr virus–encoded nuclear antigen 1 protein (EBNA1), with or without its internal glycine-alanine repeat sequence (EBNA1 and EBNA1ΔGA, respectively), which display distinct differences in translation efficiency. We demonstrate that RDPs constitute a significant proportion of newly synthesized EBNA1 and EBNA1ΔGA and that the levels of RDPs produced by each of these proteins directly correlate with the translation efficiency of either EBNA1 or EBNA1ΔGA. As a consequence, a higher number of major histocompatibility complex–peptide complexes can be detected on the surface of cells expressing EBNA1ΔGA, and these cells are more efficiently recognized by virus-specific cytotoxic T lymphocytes compared to the full-length EBNA1. More importantly, we also demonstrate that the endogenous processing of these CD8+ T cell epitopes is predominantly determined by the rate at which the RDPs are generated rather than the intracellular turnover of these proteins

    Endogenous Presentation of CD8+ T Cell Epitopes from Epstein-Barr Virus–encoded Nuclear Antigen 1

    Get PDF
    Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1

    Evidence for the Presentation of Major Histocompatibility Complex Class I–restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocytes

    Get PDF
    The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is expressed in all EBV-associated tumors, making it an important target for immunotherapy. However, evidence for major histocompatibility complex (MHC) class I–restricted EBNA1 peptides endogenously presented by EBV-transformed B and tumor cells remains elusive. Here we describe for the first time the identification of an endogenously processed human histocompatibility leukocyte antigen (HLA)-B8–restricted EBNA1 peptide that is recognized by CD8+ T cells. T cell recognition could be inhibited by the treatment of target cells with proteasome inhibitors that block the MHC class I antigen processing pathway, but not by an inhibitor (chloroquine) of MHC class II antigen processing. We also demonstrate that new protein synthesis is required for the generation of the HLA-B8 epitope for T cell recognition, suggesting that defective ribosomal products (DRiPs) are the major source of T cell epitopes. Experiments with protease inhibitors indicate that some serine proteases may participate in the degradation of EBNA1 DRiPs before they are further processed by proteasomes. These findings not only provide the first evidence of the presentation of an MHC class I–restricted EBNA1 epitope to CD8+ T cells, but also offer new insight into the molecular mechanisms involved in the processing and presentation of EBNA1

    The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation

    Get PDF
    Thousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8+ T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope (77APQPAPENAY86) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 (156Leucine vs. 156Arginine, respectively). Surprisingly, only individuals expressing HLA-B*3508 show evidence of a CTL response to the 77APQPAPENAY86 epitope even though EBV-infected cells expressing HLA-B*3501 process and present similar amounts of peptide for CTL recognition, suggesting that factors other than peptide presentation levels are influencing immunogenicity. Functional and structural analysis revealed marked conformational differences in the peptide, when bound to each HLA-B35 allotype, that are dictated by the polymorphic HLA residue 156 and that directly affected T cell receptor recognition. These data indicate that the immunogenicity of an antigenic peptide is influenced not only by how well the peptide binds to major histocompatibility complex (MHC) molecules but also by its bound conformation. It also illustrates a novel mechanism through which MHC polymorphism can further diversify the immune response to infecting pathogens

    Epstein-Barr Virus Associated Modulation of Wnt Pathway Is Not Dependent on Latent Membrane Protein-1

    Get PDF
    Previous studies have indicated that Epstein-Barr virus (EBV) can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1). Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, β-catenin, Glycogen Synthase Kinase 3ß (GSK3β), axin and α-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and β-catenin interaction and did not induce transcriptional activation of β-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1

    Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly-Ala repeat domain and restores CD8+T cell recognition

    Get PDF
    Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo

    Epstein-Barr virus-associated Hodgkin's lymphoma

    No full text
    Survivors of Hodgkin's lymphoma (HL) frequently have many years to experience the long-term toxicities of combined modality therapies. Also, a significant proportion of HL patients will relapse or have refractory disease, and less than half of these patients will respond to current salvage strategies. 30–50% of HL cases are Epstein–Barr virus associated (EBV-positive HL). The virus is localized to the malignant cells and is clonal. EBV-positive HL is more frequent in childhood, in older adults (>45 years) and in mixed cellularity cases. The survival of EBV-positive HL in the elderly and the immunosuppressed is particularly poor. Despite improvements in our understanding of EBV-positive HL, the true contribution of EBV to the pathogenesis of HL remains unknown. Increased knowledge of the virus’ role in the basic biology of HL may generate novel therapeutic strategies for EBV-positive HL and the presence of EBV-latent antigens in the malignant HL cells may represent a target for cellular immunotherapy

    Messenger RNA Sequence Rather than Protein Sequence Determines the Level of Self-synthesis and Antigen Presentation of the EBV-encoded Antigen, EBNA1

    Get PDF
    peer-reviewedViruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.National Health & Medical Research Council (NH&MRC) Canberra, Australia (#496684 APP1005091); NH&MRC Career Development Award Research Fellowship (#496712
    corecore