19 research outputs found

    A summary of water-quality and salt marsh monitoring, Humboldt Bay, California

    Get PDF
    This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding ofwater-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperature, specific conductance, and turbidity at a 15-minute timestep at two U.S. Geological Survey water-quality stations: Mad River Slough near Arcata, California (U.S. Geological Survey station 405219124085601) and (2) Hookton Slough near Loleta, California (U.S. Geological Survey station 404038124131801). At each station, discrete water samples were collected to develop surrogate regression models that were used to compute a continuous time seriesof suspended-sediment concentration from continuously measured turbidity. Data loggers recorded water depth at a 6-minute timestep in the primary tidal channels (Mad River Slough and Hookton Slough) in two adjacent marshes (Mad River marsh and Hookton marsh). The marsh monitoring network included five study marshes. Three marshes (Mad River, Manila, and Jacoby) are in the northern embayment of Humboldt Bay and two marshes (White and Hookton) are in the southern embayment. Surface deposition and elevation change were measured using deep rod surface elevation tables and feldspar marker horizons. Sediment characteristics and soil-carbon storage were measured using a total of 10 shallow cores, distributed across 5 study marshes, collected using an Eijkelkamp peat sampler. Rates of marsh edge erosion (2010–19) were quantified in four marshes (Mad River, Manila, Jacoby, and White) by estimating changes in the areal extent of the vegetated marsh plain using repeat aerial imagery and light detection and ranging (LiDAR)-derived elevation data. During the monitoring period (2016–19), the mean suspended-sediment concentration computed for Hookton Slough (50±20 milligrams per liter [mg/L]) was higher than Mad River Slough (18±7 mg/L). Uncertainty in mean suspended-sediment concentration values is reported using a 90-percent confidence interval. Across the five study marshes, elevation change (+1.8±0.6 millimeters per year[mm/yr]) and surface deposition (+2.5±0.5 mm/yr) were lower than published values of local sea-level rise (4.9±0.8 mm/yr), and mean carbon density was 0.029±0.005 grams of carbon per cubic centimeter. From 2010 to 2019, marsh edge erosion and soil carbon loss were greatest in low-elevation marshes with the marsh edge characterized by a gentle transition from mudflat to vegetated marsh (herein, ramped edge morphology) and larger wind-wave exposure. Jacoby Creek marsh experienced the greatest edge erosion. In total, marsh edge erosion was responsible for 62.3 metric tons of estuarine soil carbon storage loss across four study marshes. Salt marshes are an important component of coastal carbon, which is frequently referred to as “blue carbon.” The monitoring data presented in this report provide fundamental information needed to manage blue carbon stocks, assess marsh vulnerability, inform sea-level rise adaptation planning, and build coastal resiliency to climate change

    A prioritization protocol for coastal wetland restoration on Molokaʻi, Hawaiʻi

    Get PDF
    Hawaiian coastal wetlands provide important habitat for federally endangered waterbirds and socio-cultural resources for Native Hawaiians. Currently, Hawaiian coastal wetlands are degraded by development, sedimentation, and invasive species and, thus, require restoration. Little is known about their original structure and function due to the large-scale alteration of the lowland landscape since European contact. Here, we used 1) rapid field assessments of hydrology, vegetation, soils, and birds, 2) a comprehensive analysis of endangered bird habitat value, 3) site spatial characteristics, 4) sea-level rise projections for 2050 and 2100 and wetland migration potential, and 5) preferences of the Native Hawaiian community in a GIS site suitability analysis to prioritize restoration of coastal wetlands on the island of MolokaÊ»i. The site suitability analysis is the first, to our knowledge, to incorporate community preferences, habitat criteria for endangered waterbirds, and sea-level rise into prioritizing wetland sites for restoration. The rapid assessments showed that groundwater is a ubiquitous water source for coastal wetlands. A groundwater-fed, freshwater herbaceous peatland or “coastal fen” not previously described in HawaiÊ»i was found adjacent to the coastline at a site being used to grow taro, a staple crop for Native Hawaiians. In traditional ecological knowledge, such a groundwater-fed, agro-ecological system is referred to as a loÊ»ipĆ«nāwai (spring pond). Overall, 39 plant species were found at the 12 sites; 26 of these were wetland species and 11 were native. Soil texture in the wetlands ranged from loamy sands to silt and silty clays and the mean % organic carbon content was 10.93% ± 12.24 (sd). In total, 79 federally endangered waterbirds, 13 Hawaiian coots (‘alae keÊ»okeÊ»o; Fulica alai) and 66 Hawaiian stilts (aeÊ»o; Himantopus mexicanus knudseni), were counted during the rapid field assessments. The site suitability analysis consistently ranked three sites the highest, KaupapaloÊ»i o KaÊ»amola, KakahaiÊ»a National Wildlife Refuge, and Ê»ĆŒhiÊ»apilo Pond, under three different weighting approaches. Site prioritization represents both an actionable plan for coastal wetland restoration and an alternative protocol for restoration decision-making in places such as HawaiÊ»i where no pristine “reference” sites exist for comparison

    Impounded Marshes on Subsided Islands: Simulated Vertical Accretion, Processes, and Effects, Sacramento-San Joaquin Delta, CA USA

    No full text
    There is substantial interest in stopping and reversing the effects of subsidence in the Sacramento–San Joaquin Delta (Delta) where organic soils predominate. Also, the passage of California Assembly Bill 32 in 2006 created the potential to trade credits for carbon sequestered in wetlands on subsided Delta islands. The primary purpose of the work described here was to estimate future vertical accretion and understand processes that affect vertical accretion and carbon sequestration in impounded marshes on subsided Delta islands. Using a cohort-accounting model, we simulated vertical accretion from 4,700 calibrated years before present (BP) at a wetland area located within Franks Tract State Recreation Area (lat 38.059, long −121.611, hereafter, “Franks Wetland”)—a small, relatively undisturbed marsh island—and at the Twitchell Island subsidence-reversal demonstration project since 1997. We used physical and chemical data collected during the study as well as literature values for model inputs. Model results compared favorably with measured rates of vertical accretion, mass of carbon sequestered, bulk density and organic matter content.From 4,700 to model-estimated 350 years BP, the simulated rate of vertical accretion at Franks Wetland averaged about 0.12 cm yr-1, which is within the range of rates in tidal wetlands worldwide. Our model results indicate that large sediment inputs during the last 150 to 200 years resulted in a higher accretion rate of 0.3 cm yr -1. On Twitchell Island, greater organic inputs resulted in average vertical accretion rates as high as 9.2 cm yr -1. Future simulations indicate that the managed impounded marsh will accrete highly organic material at rates of about 3 cm yr -1. Model results coupled with GIS analysis indicate that large areas of the periphery of the Delta, if impounded and converted to freshwater marsh, could be restored to tidal elevations within 50 to 100 years. Most of the central Delta would require 50 to 250 years to be restored to projected mean sea level. A large portion of the western Delta could be restored to mean sea level within 50 to 150 years (large areas on Sherman, Jersey, and Bethel islands, and small areas on Bradford, Twitchell, and Brannan islands, and Webb Tract). We estimated that long-term carbon sequestration rates for impounded marshes such as the Twitchell Island demonstration ponds will range from 12 to 15 metric tons carbon ha-1 yr-1. Creation of impounded marshes on Delta islands can substantially benefit levee stability as demonstrated by cumulative force and hydraulic gradient calculations.

    Impounded Marshes on Subsided Islands: Simulated Vertical Accretion, Processes, and Effects, Sacramento-San Joaquin Delta, CA USA

    No full text
    There is substantial interest in stopping and reversing the effects of subsidence in the Sacramento–San Joaquin Delta (Delta) where organic soils predominate. Also, the passage of California Assembly Bill 32 in 2006 created the potential to trade credits for carbon sequestered in wetlands on subsided Delta islands. The primary purpose of the work described here was to estimate future vertical accretion and understand processes that affect vertical accretion and carbon sequestration in impounded marshes on subsided Delta islands. Using a cohort-accounting model, we simulated vertical accretion from 4,700 calibrated years before present (BP) at a wetland area located within Franks Tract State Recreation Area (lat 38.059, long −121.611, hereafter, “Franks Wetland”)—a small, relatively undisturbed marsh island—and at the Twitchell Island subsidence-reversal demonstration project since 1997. We used physical and chemical data collected during the study as well as literature values for model inputs. Model results compared favorably with measured rates of vertical accretion, mass of carbon sequestered, bulk density and organic matter content. From 4,700 to model-estimated 350 years BP, the simulated rate of vertical accretion at Franks Wetland averaged about 0.12 cm yr-1, which is within the range of rates in tidal wetlands worldwide. Our model results indicate that large sediment inputs during the last 150 to 200 years resulted in a higher accretion rate of 0.3 cm yr -1. On Twitchell Island, greater organic inputs resulted in average vertical accretion rates as high as 9.2 cm yr -1. Future simulations indicate that the managed impounded marsh will accrete highly organic material at rates of about 3 cm yr -1. Model results coupled with GIS analysis indicate that large areas of the periphery of the Delta, if impounded and converted to freshwater marsh, could be restored to tidal elevations within 50 to 100 years. Most of the central Delta would require 50 to 250 years to be restored to projected mean sea level. A large portion of the western Delta could be restored to mean sea level within 50 to 150 years (large areas on Sherman, Jersey, and Bethel islands, and small areas on Bradford, Twitchell, and Brannan islands, and Webb Tract). We estimated that long-term carbon sequestration rates for impounded marshes such as the Twitchell Island demonstration ponds will range from 12 to 15 metric tons carbon ha-1 yr-1. Creation of impounded marshes on Delta islands can substantially benefit levee stability as demonstrated by cumulative force and hydraulic gradient calculations. </p

    Modeling Tidal Freshwater Marsh Sustainability in the Sacramento–San Joaquin Delta Under a Broad Suite of Potential Future Scenarios

    No full text
    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future rates of aboveground and belowground plant productivity under increased CO2 concentrations and flooding

    DataSheet1_An assessment of future tidal marsh resilience in the San Francisco Estuary through modeling and quantifiable metrics of sustainability.docx

    No full text
    Quantitative, broadly applicable metrics of resilience are needed to effectively manage tidal marshes into the future. Here we quantified three metrics of temporal marsh resilience: time to marsh drowning, time to marsh tipping point, and the probability of a regime shift, defined as the conditional probability of a transition to an alternative super-optimal, suboptimal, or drowned state. We used organic matter content (loss on ignition, LOI) and peat age combined with the Coastal Wetland Equilibrium Model (CWEM) to track wetland development and resilience under different sea-level rise scenarios in the Sacramento-San Joaquin Delta (Delta) of California. A 100-year hindcast of the model showed excellent agreement (R2 = 0.96) between observed (2.86 mm/year) and predicted vertical accretion rates (2.98 mm/year) and correctly predicted a recovery in LOI (R2 = 0.76) after the California Gold Rush. Vertical accretion in the tidal freshwater marshes of the Delta is dominated by organic production. The large elevation range of the vegetation combined with high relative marsh elevation provides Delta marshes with resilience and elevation capital sufficiently great to tolerate centenary sea-level rise (CLSR) as high as 200 cm. The initial relative elevation of a marsh was a strong determinant of marsh survival time and tipping point. For a Delta marsh of average elevation, the tipping point at which vertical accretion no longer keeps up with the rate of sea-level rise is 50 years or more. Simulated, triennial additions of 6 mm of sediment via episodic atmospheric rivers increased the proportion of marshes surviving from 51% to 72% and decreased the proportion drowning from 49% to 28%. Our temporal metrics provide critical time frames for adaptively managing marshes, restoring marshes with the best chance of survival, and seizing opportunities for establishing migration corridors, which are all essential for safeguarding future habitats for sensitive species.</p

    Carbon stock losses and recovery observed for a mangrove ecosystem following a major hurricane in Southwest Florida

    No full text
    Studies integrating mangrove in-situ observations and remote sensing analysis for specific sites often lack precise estimates of carbon stocks over time frames that include disturbance events. This study quantifies change in mangrove area from 1985 to 2018 with Landsat time series analysis, estimates above and belowground stored carbon using field data, and evaluates aboveground carbon stock changes after the 2004 Category 4, Hurricane Charley, in J.N. “Ding” Darling National Wildlife Refuge. Two allometric equation methods yielding similar results were used to estimate aboveground carbon content in three mangrove species found in the refuge. Aboveground carbon contained 67 (SE = 2) MgC ha−1 with a total refuge estimate of 74,504 MgC in 2018. Sediment contained 259 (SE = 28) MgC ha−1 for a total of 288,008 MgC in the refuge. The initial reduction in mangrove area caused by Hurricane Charley was between 0.6% and 5.3%, equivalent to between 427 MgC and 3,599 MgC under three different scenarios of carbon loss. As a result of the hurricane, approximately 61 ha of mangroves were disturbed, of which 24 ha had recovered by 2018, with 37 ha (~3% of the pre-hurricane mangrove area) still not recovered 14 years after the event. The 37 ha of mangroves that have not recovered are located in a tidally restricted area of the refuge. A longer recovery time in this area will likely result in a greater loss of carbon storage than in the rest of the refuge
    corecore