13 research outputs found
Molecular diagnostics of gliomas: state of the art
Modern neuropathology serves a key function in the multidisciplinary management of brain tumor patients. Owing to the recent advancements in molecular neurooncology, the neuropathological assessment of brain tumors is no longer restricted to provide information on a tumorās histological type and malignancy grade, but may be complemented by a growing number of molecular tests for clinically relevant tissue-based biomarkers. This article provides an overview and critical appraisal of the types of genetic and epigenetic aberrations that have gained significance in the molecular diagnostics of gliomas, namely deletions of chromosome arms 1p and 19q, promoter hypermethylation of the O6-methylguanine-methyl-transferase (MGMT) gene, and the mutation status of the IDH1 and IDH2 genes. In addition, the frequent oncogenic aberration of BRAF in pilocytic astrocytomas may serve as a novel diagnostic marker and therapeutic target. Finally, this review will summarize recent mechanistic insights into the molecular alterations underlying treatment resistance in malignant gliomas and outline the potential of genome-wide profiling approaches for increasing our repertoire of clinically useful glioma markers
Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution
Item does not contain fulltextThe histopathological diagnosis of diffuse gliomas often lacks the precision that is needed for tailored treatment of individual patients. Assessment of the molecular aberrations will probably allow more robust and prognostically relevant classification of these tumors. Markers that have gained a lot of interest in this respect are co-deletion of complete chromosome arms 1p and 19q, (hyper)methylation of the MGMT promoter and IDH1 mutations. The aim of this study was to assess the prognostic significance of complete 1p/19q co-deletion, MGMT promoter methylation and IDH1 mutations in patients suffering from diffuse gliomas. The presence of these molecular aberrations was investigated in a series of 561 diffuse astrocytic and oligodendroglial tumors (low grade n=110, anaplastic n=118 and glioblastoma n=333) and correlated with age at diagnosis and overall survival. Complete 1p/19q co-deletion, MGMT promoter methylation and/or IDH1 mutation generally signified a better prognosis for patients with a diffuse glioma including glioblastoma. However, in all 10 patients with a histopathological diagnosis of glioblastoma included in this study complete 1p/19q co-deletion was not associated with improved survival. Furthermore, in glioblastoma patients >50 years of age the favorable prognostic significance of IDH1 mutation and MGMT promoter methylation was absent. In conclusion, molecular diagnostics is a powerful tool to obtain prognostically relevant information for glioma patients. However, for individual patients the molecular information should be interpreted with caution and weighed in the context of parameters such as age and histopathological diagnosis
Multiplex blood reporters for simultaneous monitoring of cellular processes
Contains fulltext :
125685.pdf (publisher's version ) (Open Access)Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously
Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas
Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III. IDH2 encoding mitochondrial NADP+-dependent isocitrate dehydrogenase is also mutated in these tumors, albeit at much lower frequencies. Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors. To determine mutation types and their frequencies, we examined 1,010 diffuse gliomas. We detected 716 IDH1 mutations and 31 IDH2 mutations. We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III. We report on an inverse association of IDH1 and IDH2 mutations in these gliomas and a non-random distribution of the mutation types within the tumor entities. IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors. In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations
Cyclin D1 genotype and expression in sporadic hemangioblastomas.
Contains fulltext :
47368.pdf (publisher's version ) (Closed access)Central nervous system (CNS) hemangioblastomas are highly-vascularized tumors occurring in sporadic form or as a manifestation of von Hippel-Lindau disease (VHL). The VHL protein (pVHL) regulates various target genes, one of which is the CCND1 gene, encoding cyclin D1, a protein that plays a critical role in the control of the cell cycle. Overexpression of cyclin D1 is found in many cancers. The CCND1 gene contains a common G --> A polymorphism (870G > A) that enhances alternative splicing of the gene. CCND1 genotype is associated with clinical outcome in a number of cancers although prognostic significance varies with tumor type. In VHL disease, CCND1 genotype has been suggested as a genetic modifier that influences susceptibility to hemangioblastomas.In order to analyze whether CCND1 genotype plays a role in sporadic CNS hemangioblastomas, we investigated CCND1 genotype in tumor tissue of 17 sporadic and also in five VHL-related CNS hemangioblastomas. In addition, in these tumors the extent and localization of cyclin D1 expression was investigated by immunohistochemistry. We found no deviation in CCND1 genotype distribution and allele frequencies from expected values. Also, there was no correlation between age at onset and CCND1 genotype. The expression of cyclin D1 as detected by immunohistochemistry was highly variable within and between tumors, without a clear correlation with CCND1 genotype. We conclude that, whereas variable but sometimes high cyclin D1 expression is a feature of sporadic hemangioblastomas, CCND1 genotype is unlikely to be an important genetic modifier in the oncogenesis of these tumors
Multiplex Blood Reporters for Simultaneous Monitoring of Cellular Processes
Reporters secreted into the conditioned
medium of cells in culture
or into blood in vivo have shown to be useful tools for simple and
noninvasive monitoring of biological processes in real-time. Here,
we characterize the naturally secreted <i>Vargula</i> luciferase
as a secreted blood reporter and show that this reporter can be multiplexed
with the secreted <i>Gaussia</i> luciferase and alkaline
phosphatase for simultaneous monitoring of three different cellular
processes in the same biological system. We applied this system to
monitor the response of three different subsets of glioma cells to
a clinically relevant chemotherapeutic agent in the same well in culture
or animal in vivo. This system could be extended to any field to detect
multiple processes in the same biological system and is amenable for
high-throughput screening to find drugs that affect multiple cellular
populations/phenomena simultaneously
MGMT Promoter Methylation Is Prognostic but Not Predictive for Outcome to Adjuvant PCV Chemotherapy in Anaplastic Oligodendroglial Tumors: A Report From EORTC Brain Tumor Group Study 26951
PURPOSE: O6-methylguanine-methyltransferase (MGMT) promoter methylation has been shown to predict survival of patients with glioblastomas if temozolomide is added to radiotherapy (RT). It is unknown if MGMT promoter methylation is also predictive to outcome to RT followed by adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy in patients with anaplastic oligodendroglial tumors (AOT).
PATIENTS AND METHODS: In the European Organisation for the Research and Treatment of Cancer study 26951, 368 patients with AOT were randomly assigned to either RT alone or to RT followed by adjuvant PCV. From 165 patients of this study, formalin-fixed, paraffin-embedded tumor tissue was available for MGMT promoter methylation analysis. This was investigated with methylation specific multiplex ligation-dependent probe amplification.
RESULTS: In 152 cases, an MGMT result was obtained, in 121 (80%) cases MGMT promoter methylation was observed. Methylation strongly correlated with combined loss of chromosome 1p and 19q loss (P = .00043). In multivariate analysis, MGMT promoter methylation, 1p/19q codeletion, tumor necrosis, and extent of resection were independent prognostic factors. The prognostic significance of MGMT promoter methylation was equally strong in the RT arm and the RT/PCV arm for both progression-free survival and overall survival. In tumors diagnosed at central pathology review as glioblastoma, no prognostic effect of MGMT promoter methylation was observed.
CONCLUSION: In this study, on patients with AOT MGMT promoter methylation was of prognostic significance and did not have predictive significance for outcome to adjuvant PCV chemotherapy. The biologic effect of MGMT promoter methylation or pathogenetic features associated with MGMT promoter methylation may be different for AOT compared with glioblastoma
Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics
Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly discuss two common approaches to detect gene copy number gains from NGS data, i.e., the relative coverage and B-allele frequencies. In addition, we provide recommendations for reporting gene copy gains for clinical purposes. In addition to general QC metrics associated with NGS in routine diagnostics, it is recommended to include clinically relevant quantitative parameters of copy number gains in the clinical report, such as (i) relative coverage and estimated copy numbers in neoplastic cells, (ii) statistical scores to show significance (e.g., z-scores), and (iii) the sensitivity of the assay and restrictions of NGS-based detection of copy number gains. Collectively, this information can guide clinical and analytical decisions such as the reliable detection of high-level gene amplifications and the requirement for additional in situ assays in case of borderline results or limited sensitivity