57 research outputs found

    The Promise of Neuroprotective Agents in Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available

    Network Analysis Identifies SOD2 mRNA as a Potential Biomarker for Parkinson's Disease

    Get PDF
    Increasing evidence indicates that Parkinson's disease (PD) and type 2 diabetes (T2DM) share dysregulated molecular networks. We identified 84 genes shared between PD and T2DM from curated disease-gene databases. Nitric oxide biosynthesis, lipid and carbohydrate metabolism, insulin secretion and inflammation were identified as common dysregulated pathways. A network prioritization approach was implemented to rank genes according to their distance to seed genes and their involvement in common biological pathways. Quantitative polymerase chain reaction assays revealed that a highly ranked gene, superoxide dismutase 2 (SOD2), is upregulated in PD patients compared to healthy controls in 192 whole blood samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Diagnostic and Prognostic Biomarkers in Parkinson's disease (PROBE). The results from this study reinforce the idea that shared molecular networks between PD and T2DM provides an additional source of biologically meaningful biomarkers. Evaluation of this biomarker in de novo PD patients and in a larger prospective longitudinal study is warranted

    Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Get PDF
    Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s diseases (HD). We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Regulation of Retention of FosB Intron 4 by PTB

    Get PDF
    One effect of stressors such as chronic drug administration is that sequence within the terminal exon of the transcription factor FosB is recognized as intronic and removed by alternative splicing. This results in an open-reading-frame shift that produces a translation stop codon and ultimately a truncated protein, termed ΔFosB. In vitro splicing assays with control and mutated transcripts generated from a fosB mini-gene construct indicated a CU-rich sequence at the 3′ end of intron 4 (I4) plays an important role in regulating fosB pre-mRNA splicing due to its binding of polypyrimidine tract binding protein (PTB). PTB binding to this sequence is dependent upon phosphorylation by protein kinase A and is blocked if the CU-rich sequence is mutated to a U-rich region. When this mutated fosB minigene is expressed in HeLa cells, the splicing efficiency of its product is increased compared to wild type. Moreover, transient transfection of PTB-1 in HeLa cells decreased the splicing efficiency of a wild type fosB minigene transcript. Depletion of PTB from nuclear extracts facilitated U2AF65 binding to wild type sequence in vitro, suggesting these proteins function in a dynamic equilibrium to modulate fosB pre-mRNA alternative splicing. These results demonstrate for the first time that phosphorylated PTB promotes intron retention and thereby silences the splicing of fosB I4

    A Comparison of Gene Expression Changes in the Blood of Individuals Consuming Diets Supplemented with Olives, Nuts or Long-Chain Omega-3 Fatty Acids

    No full text
    Background: The Mediterranean diet, which is rich in olive oil, nuts, and fish, is considered healthy and may reduce the risk of chronic diseases. Methods: Here, we compared the transcriptome from the blood of subjects with diets supplemented with olives, nuts, or long-chain omega-3 fatty acids and identified the genes differentially expressed. The dietary genes obtained were subjected to network analysis to determine the main pathways, as well as the transcription factors and microRNA interaction networks to elucidate their regulation. Finally, a gene-associated disease interaction network was performed. Results: We identified several genes whose expression is altered after the intake of components of the Mediterranean diets compared to controls. These genes were associated with infection and inflammation. Transcription factors and miRNAs were identified as potential regulators of the dietary genes. Interestingly, caspase 1 and sialophorin are differentially expressed in the opposite direction after the intake of supplements compared to Alzheimer’s disease patients. In addition, ten transcription factors were identified that regulated gene expression in supplemented diets, mild cognitive impairment, and Alzheimer’s disease. Conclusions: We identified genes whose expression is altered after the intake of the supplements as well as the transcription factors and miRNAs involved in their regulation. These genes are associated with schizophrenia, neoplasms, and rheumatic arthritis, suggesting that the Mediterranean diet may be beneficial in reducing these diseases. In addition, the results suggest that the Mediterranean diet may also be beneficial in reducing the risk of dementia

    Blood Biomarkers Associated with Cognitive Decline in Early Stage and Drug-Naive Parkinson's Disease Patients.

    No full text
    Early diagnosis of Parkinson's disease (PD) continues to be a major challenge in the field. The lack of a robust biomarker to detect early stage PD patients has considerably slowed the progress toward the development of potential therapeutic agents. We have previously evaluated several RNA biomarkers in whole blood from participants enrolled in two independent clinical studies. In these studies, PD patients were medicated, thus, expression of these biomarkers in de novo patients remains unknown. To this end, we tested ten RNA biomarkers in blood samples from 99 untreated PD patients and 101 HC nested in the cross-sectional Parkinson's Progression Markers Initiative by quantitative real-time PCR. One biomarker out of ten, COPZ1 trended toward significance (nominal p = 0.009) when adjusting for age, sex, and educational level. Further, COPZ1, EFTUD2 and PTBP1 mRNAs correlated with clinical features in PD patients including the Hoehn and Yahr scale, Movement Disorder Society revision of Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA) score. Levels of EFTUD2 and PTBP1 were significantly higher in cognitively normal PD patients (PD-CN) compared to cognitively impaired PD patients (PD-MCI). Interestingly, blood glucose levels were significantly higher in PD and PD-MCI patients (≥ 100 mg/dL, pre-diabetes) compared to HC. Collectively, we report the association of three RNA biomarkers, COPZ1, EFTUD2 and PTBP1 with clinical features including cognitive decline in early drug-naïve PD patients. Further, our results show that drug-naïve PD and PD-MCI patients have glucose levels characteristic of pre-diabetes patients, suggesting that impaired glucose metabolism is an early event in PD. Evaluation of these potential biomarkers in a larger longitudinal study is warranted

    Reply to Liu et al.: HNF4A

    No full text

    Integrative Network Analysis Unveils Convergent Molecular Pathways in Parkinson's Disease and Diabetes

    Get PDF
    <div><p>Background</p><p>Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level.</p><p>Methods and Findings</p><p>Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (<i>APP</i>), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of <i>APP</i> is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of <i>APP</i> could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients.</p><p>Conclusions</p><p>These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of <i>APP</i> in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.</p></div
    corecore