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Abstract

Increasing evidence indicates that Parkinson’s disease (PD) and type 2 diabetes (T2DM) share dysregulated molecular
networks. We identified 84 genes shared between PD and T2DM from curated disease-gene databases. Nitric oxide
biosynthesis, lipid and carbohydrate metabolism, insulin secretion and inflammation were identified as common
dysregulated pathways. A network prioritization approach was implemented to rank genes according to their distance to
seed genes and their involvement in common biological pathways. Quantitative polymerase chain reaction assays revealed
that a highly ranked gene, superoxide dismutase 2 (SOD2), is upregulated in PD patients compared to healthy controls in
192 whole blood samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Diagnostic and
Prognostic Biomarkers in Parkinson’s disease (PROBE). The results from this study reinforce the idea that shared molecular
networks between PD and T2DM provides an additional source of biologically meaningful biomarkers. Evaluation of this
biomarker in de novo PD patients and in a larger prospective longitudinal study is warranted.
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Introduction

Accumulating epidemiological evidence suggests a risk of PD

among patients with T2DM [1–3], reviewed in [4,5]. However,

there remains conflict among some studies. For example, several

groups suggest an inverse association between PD and T2DM

[6,7] and other studies have not found a significant association

[8,9]. Despite this discrepancy, T2DM is associated with more

severe symptoms in PD. T2DM contributes to postural instability

and gait difficulty in PD [10] and insulin resistance is associated

with an increased risk of dementia in PD [11]. Besides insulin

resistance, dysregulation in other shared biological pathways

including mitochondrial dysfunction, endoplasmic reticulum (ER)

stress and inflammation may be a plausible explanation for the

coexistence of both aging diseases [4,12].

Both PD and T2DM are considered idiopathic diseases in

which a combination of genetic and environmental factors are

likely to be involved in the disease pathogenesis. In fact, genetic

risk factors identified by genome-wide association studies (GWAS)

accounts for approximately 5–10% of the PD and T2DM cases

[4,5]. Several system-biology approaches including animal models

and network analysis have been used to understand the molecular

mechanisms underlying the linkage between PD and T2DM

[5,13,14]. For example, diabetic mice treated with 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) displayed an exacer-

bated neurodegeneration accompanied by inflammation and ER-

stress [13]. In parallel, an integrative network-based approach

restricted to data from only GWAS was used to investigate the

potential molecular framework linking PD and T2DM and to

identify potential biomarkers with clinical applicability. Results

from these studies identified the amyloid precursor protein (APP)

mRNA as a biomarker for PD [15]. Similarly, a network approach

identified PTPN1 mRNA as a diagnostic biomarker in progressive

supranuclear palsy, an atypical parkinsonian disorder sometimes

misdiagnosed as PD [16].

Here we expanded our previous network analysis to integrate

data from publicly available and curated disease-gene databases to

further investigate the connection between both diseases. The

disease-gene associations derived from the databases included in

this study are not strictly determined by GWAS, thus allowing the

exploration of other potentially interesting genes that may have a

more modest association. Because PD and T2DM are sporadic

and environmental factors play a role in disease etiology and

development, it is important to use databases that include genetic
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disease associations identified through studies that tested environ-

mental factors such as toxin. Our systematic network approach is

illustrated in Figure 1. Briefly, genes shared between PD and

T2DM were collected from several databases and mapped into the

human functional linkage network (FLN). We implemented a

random walk algorithm with restart (RWR) to rank the group of

genes shared between PD and T2DM. We further evaluated the

applicability of the network prioritization approach by testing the

most highly ranked gene as a potential diagnostic biomarker for

PD. In this study we identify SOD2 mRNA as a potential blood

biomarker that can be used to identify patients with PD.

Methods

Database mining and network analysis
We queried the DisGeNET database [17] that integrates

information from four respositories: Online Medelian Inheritance

in Man (OMIM), UniProt/SwissProte (UNIPROT), Pharmaco-

genomics Knowledge Base (PHARMGKB), and Comparative

Toxicogenomics Database (CTD). DisGeNET can be accessed

through the Cytoscape 2.8.3, a platform for complex network

analysis [18]. Search disease terms used in DisGeNET were the

following: Parkinson Disease (umls:C0030567), Diabetes Mellitus,

Type 2 (umls:C0011860). Disease-gene networks were retrieved

for PD and T2DM independently. Using the advanced network

merge option in Cytoscape, both PD and T2DM gene networks

were merged using gene ID as a matching attribute. Only shared

genes between both diseases were collected for further analysis.

The Disease and Gene Annotations database (DGA) [19] was

accessed through the web (http://dga.nubic.northwestern.edu/

pages/search.php). We searched for gene annotations shared

between PD and T2DM. Search disease terms in DGA were the

following: Parkinson’s disease, type 2 diabetes mellitus. Similarly,

we explored Human Experimental/Functional Mapper (HE-

FalMp) using the web-interface (http://hefalmp.princeton.edu/)

to investigate genetic associations between PD and T2DM [20].

Search disease terms used in HEFalMp were: Parkinson disease,

Diabetes Mellitus. A significance score of 1025 was used as a cut-

off value for inclusion in the list of candidate genes. The Integrated

Complex Traits Networks interface (iCTNet), can be accessed

through the Cytoscape plugin [21]. This database allows the

automated construction of disease networks and integrates

phenotype-SNP, protein-protein interaction, disease-tissue, tissue-

gene and drug-gene interactions. Search disease terms were:

Parkinson’s disease, Diabetes Mellitus. We queried the disease-

gene networks associated with PD and T2DM using a cutoff p-

Figure 1. Integrative network approach. Well-characterized genes associated with PD (purple circles) and T2DM (magenta circles) were mapped
to the FLN and specified as training set. Shared genes between PD and T2DM (yellow circles) were collected from multiple databases and mapped to
the human FLN (black). A random walk algorithm with restart (RWR) was implemented to prioritize the list of shared genes between PD and T2DM
according to their distance to known disease genes and in terms of biological pathways involved. A highly ranked gene was evaluated as diagnostic
biomarker for PD on RNA samples from whole blood obtained from two independent clinical trials.
doi:10.1371/journal.pone.0109042.g001
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value of 10-5. Unlike DisGeNET, disease-gene networks are

merged automatically in iCTNet. Like in previous steps, only

shared genes between PD and T2DM were collected for further

analysis. A total of 84 genes shared between PD and T2DM were

collected from the aforementioned databases. Genetic associations

were manually curated after searching the literature in Pubmed.

Functional and gene ontology analysis was performed using

GENEMANIA plugin in Cytoscape [22]. In GENEMANIA, we

Figure 2. Biological functional analysis of candidate genes. Network of interactions among PD and T2DM shared genes, as retrieved by
GeneMANIA. Shared genes between PD and T2DM are displayed in yellow circles and other genes with the greatest number of interactions with
shared genes are displayed in gray circles. The size of the gray nodes represents the degree of association with the input genes (i.e., smaller size
represents low connectivity). The most represented pathways retrieved by GeneMANIA are displayed using GO annotations and Q-values of
significance.
doi:10.1371/journal.pone.0109042.g002
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used the default settings of 20, which are the genes that have the

greatest number of interactions, and advanced settings to include

physical, predicted, and genetic interactions, and interconnected

pathways.

Gene prioritization methods and cross-validation analysis
The list of 84 genes shared between PD and T2DM collected

from the databases was used for subsequent analysis using GPEC,

a Cytoscape 2.8.3 plugin that performs a RWR algorithm [23].

We used the default, weighted and undirected human FLN for this

analysis that contains 14,230 nodes and 263,884 links. Nodes

represent genes and each link represents the likelihood that the

connected genes participate in common biological processes. In

order to perform the gene prioritization in GPEC, we first

collected a list of well-characterized genes associated with PD and

T2DM and genes involved in the PD and T2DM KEGG

pathways (Table S2). Well-characterized genes known to be

associated with PD and T2DM were retrieved from the OMIM

(http://www.ncbi.nlm.nih.gov/omim), the Genetic association

database (GAD) (http://geneticassociationdb.nih.gov/) and

PDgene (http://www.pdgene.org/) (Table S2). Genes involved

in the PD and T2DM signaling pathways were retrieved from the

KEGG database (http://www.genome.jp/kegg/pathway.html).

As a first step in the prioritization, the list of well-characterized

genes associated with PD and the PD KEGG pathway was used as

a training set. The test set included the 84 genes shared between

both diseases and genes associated with T2DM and its associated

KEGG pathway. The training set was manually curated to ensure

that there was no overlap with any of the genes contained in the

test set. To perform the RWR, we set back-probability to 0.5 and

candidate genes were scored and ranked. As a second step, we

performed a series of prioritization steps with respect to the most

significant biological pathways retrieved by GENEMANIA. These

prioritization steps were performed for each individual pathway

independently. To this end, we collected the set of genes curated

for each biological pathway from the Broad Institute’s Molecular

Signatures Database (MSigDB) 3.0 [24] (Table S2). Here, the

training set consisted of genes curated for each pathway and the

test set consisted of the 84 genes shared between PD and T2DM.

In GPEC, we evaluated the performance of each prioritization

with a leave-one-out cross-validation (LOOCV) strategy where the

number of training genes is equal to the number of cross-validation

trials and one of the genes in the test set is held out during each

trial. As a result, a ROC curve of sensitivity versus 1-specificity is

built by the software. Since all the scores were determined by the

RWR algorithm, the final score for each gene was defined as the

sum of all individual scores obtained from each prioritization as

previously demonstrated using similar analyses [15,16,25]. The

overall workflow is presented in Figure 1.

Information about HBS and PROBE study participants
The Institutional Review Boards of Rosalind Franklin Univer-

sity of Medicine and Science approved the study protocol. Written

informed consent was received from all participants. We used 96

individuals including 50 PD patients (31 men, 19 women; Hoehn

and Yahr scale 1.9760.62; mean age at enrollment 63.1268.96;

mean age at onset 58.75610.17) and 46 healthy age-matched

controls (HC) (26 men, 20 women; mean age at enrollment

64.28610.42) enrolled in the HBS. Other clinical information is

reported in [15]. There were 5 PD and 5 HC patients with

T2DM. Details of patient and controls recruitment, clinical

assessments, and biobanking in the HBS study population have

been reported in part elsewhere [26] and http://www.

neurodiscovery.harvard.edu/research/biomarkers.html. As an in-

Table 1. Highly ranked RWR score-based genes.

Rank Gene Symbol Gene Name Score

1 SOD2 Superoxide dismutase 2 3.08E-03

2 MT-ND1 Mitochondrially encoded NADH dehydrogenase 1 2.93E-03

3 IFNG Interferon, gamma 2.90E-03

4 TNF Tumor necrosis factor 2.39E-03

5 TP53 Tumor protein p53 2.36E-03

6 IL6 Interleukin 6 2.16E-03

7 AKT1 V-akt murine thymoma viral oncogene homolog 1 1.96E-03

8 HNF4A Hepatocyte nuclear factor 4, alpha 1.80E-03

9 HMOX1 Heme oxygenase (decycling) 1 1.77E-03

10 FAS Fas (TNF receptor superfamily, member 6) 1.53E-03

11 APP Amyloid beta (A4) precursor protein 1.34E-03

12 CYP17A1 Cytochrome P450, family 17, subfamily A, polypeptide 1 1.23E-03

13 IGF1 Insulin-like growth factor 1 1.03E-03

14 PTGS2 Prostaglandin-endoperoxide synthase 2 1.02E-03

15 SOD1 Superoxide dismutase 1, soluble 9.80E-04

16 BDNF Brain-derived neurotrophic factor 8.46E-04

17 NOS2 Nitric oxide synthase 2 8.34E-04

18 TGM2 Transglutaminase 2 6.86E-04

19 GCH1 GTP cyclohydrolase 1 6.66E-04

20 UCHL1 Ubiquitin carboxyl-terminal esterase L1 6.60E-04

doi:10.1371/journal.pone.0109042.t001
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dependent replication set, we used 51 PD patients (29 men, 22

women; mean age at enrollment 63.1666.42; Hoehn and Yahr

scale 260.28) and 45 HC (24 male, 21 women; mean age at

enrollment 65.1268.60) enrolled in the PROBE Study

(#NCT00653783). There was one HC patient with T2DM.

Clinical diagnosis of PD was based on the United Kingdom

Parkinson’s Disease Society Brain Bank criteria. Healthy controls

had no history of neurological disease and a Mini-Mental State

Examination (MMSE) test score higher than 27. Inclusion and

exclusion criteria for patients enrolled in the PROBE study are

reported elsewhere in [27].

RNA isolation and real time polymerase chain reactions
Blood was collected and prepared as described using the

PAXgene Blood RNA system (Qiagen,Valencia, CA, USA)[28].

Samples with RNA integrity values . 7.0 and ratio of absorbances

at 260/280 nm between 1.7 and 2.4 were used in the current

study. Primer Express software (Life Technologies, Carlsbad, CA,

USA) was used to design the primers. The High Capacity RNA

transcription kit (Life Technologies, Carlsbad, CA, USA) was used

to reverse transcribe 1 mg of total RNA according to the

manufacturer’s protocol. The DNA engine Opticon 2 Analyzer

(Bio-Rad Life Sciences, Hercules, CA, USA) was used for the

qPCR reactions. Each 25 ml reaction contained Power SYBR (Life

Technologies, Carlsbad, CA, USA) and primers at a concentration

of 5 mM. Primer sequences used in qPCR assays are as follows:

GAPDH; forward: 59- CAACGGATTTGGTCGTATTGG-39;

reverse: 59- TGATGGCAACAATATCCACTTTACC-39,

SOD2; forward: 59- GTTCAATGGTGGTGGTCATATCA-39;

reverse: 59- GCAACTCCCCTTTGGGTTCT-39. Amplification

conditions and detailed description of qPCR experiments is

described in [15].

Statistical analysis
All analyses were performed with Prism4.0 (GraphPad, La Jolla,

CA, USA) and Statistica 8.0 (Statsoft, OK, Tulsa, USA). A student

t-test (two-tailed) was used to estimate the significance between PD

cases and controls for numerical variables. Linear regression and

Pearson correlation analysis was used to determine statistical

significance for the prospective biomarker adjusting for sex, age,

Hoehn & Yahr scale in both cohorts of patients and body mass

index (BMI) in the HBS study. A ROC curve analysis was used to

evaluate the diagnostic accuracy. A p-value less than 0.05 was

regarded statistically significant.

Results

Identification of shared genes between PD and T2DM
from disease-gene databases

We explored the DisGeNET database, a comprehensive

database of the human genetic associations related to disease

[17]. In DISGENET, the central node represents the disease and

the nodes linked to the central node represent genes that have

been associated to the queried disease. We queried the disease-

gene networks associated with both PD and T2DM. Analysis of

the merged network revealed a cluster consisting of 53 shared

genes between PD and T2DM (Table S1, Methods).

We next explored the DGA interface [19] and found 42

overlapping genes with the gene set collected in DisGeNET and 8

additional genes shared between PD and T2DM (Table S1). We

next interrogated the HEFalMp interface [20]. Similarly to DGA

and DisGeNET, we collected the shared genes between PD and

T2DM. The most significant genes in T2DM associated to PD

were HNF4A, PDX1, SLC2A4, and ABCC8 (Q,10205)(Table

S1). Finally, we interrogated the iCTNet interface [21] that

contains results from 118 GWAS published studies and data from

the GWAS catalog. In iCTNet, we found 20 genes shared between

both diseases (Table S1). A total of 84 genes shared between PD

Figure 3. Evaluation of SOD2 as a potential biomarker for PD.
A. Relative abundance of SOD2 mRNA in blood of PD patients (black
circles) compared to healthy controls (white circles) in samples from the
HBS cohort. B. Replication of biomarker expression in an independent
set of samples from patients enrolled in the PROBE study. Relative
abundance of each biomarker was calculated using GAPDH as a
reference gene and healthy controls as calibrator. Error bars represent
standard error. C. ROC curve analysis to evaluate the diagnostic
accuracy of SOD2.
doi:10.1371/journal.pone.0109042.g003
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and T2DM were collected from the aforementioned databases and

used for further analysis.

To further identify the potential functional implications in the

cluster of genes shared between PD and T2DM, we imported all

84 genes into GeneMANIA [22]. Analysis of the 84 shared genes

identified the most overrepresented pathways including nitric

oxide biosynthetic processing, carbohydrate and lipid metabolic

processing, insulin secretion, regulation of glucose, and inflamma-

tion (Figure 2).

Gene prioritization and experimental validation
Given the numerous molecular links between PD and T2DM,

we investigated the extent to which genes identified as shared

between PD and T2DM can be used to classify patients with PD.

This idea is particularly salient in light of the recent finding that

revealed that genes identified in shared molecular networks

between PD and T2DM may improve the clinical diagnosis of

PD. Accordingly, APP was identified in a functional network

shared between well-characterized genes associated with PD and

T2DM. APP mRNA was capable to distinguish PD patients from

HC with 80% accuracy [15], a diagnostic capacity that extends

beyond the one afforded by the current clinical diagnostic criteria

[29,30].

We implemented a candidate prioritization approach using a

RWR algorithm within the human the FLN described previously

[15,16,25,31]. This algorithm measures the closeness of potentially

candidate genes to confirmed genes within the FLN or protein-

protein interaction network. We used GPEC, a cytoscape plugin

for RWR-based gene prioritization [23] to rank 84 candidates

collected from the curated databases (Table S1). In the RWR

algorithm, the known disease genes are mapped to the FLN and

specified as ‘‘training set’’ and the ‘‘test set’’ containing potential

candidates can be ranked according to their closeness to the

training genes within the FLN (See Methods). The training set

consisted of well-characterized genes associated with PD and its

KEGG associated pathway. The test set included the list of 84

shared genes and well-characterized genes associated with T2DM

and its KEGG associated pathway. RWR score-based genes are

listed in Table S3. Further, we evaluated the performance of the

gene prioritization using a LOOCV strategy (see Methods).

LOOCV represented in terms of receiver operating characteristic

curve (ROC) resulted in an area under curve AUCPD-T2DM value

of 0.85 (Figure S1A).

As a second step, we prioritized the list of 84 shared genes with

respect to the most significant biological pathways determined by

GeneMania (see Methods). We collected the set of genes curated

for each biological pathway from the Broad Institute’s Molecular

Signatures Database 3.0 (MSigDB) [24] (Table S2). These gene

sets were used as training sets during each prioritization. Gene

prioritization was performed in GPEC for each individual

pathway independently (Methods, Table S3). LOOCV performed

for each prioritization resulted in AUC values ranging from 0.90–

0.99 (Figure S1B-E). The top RWR score-based genes are listed in

Table 1. The complete list of RWR score-based candidate genes

according to each prioritization step is provided in (Table S3).

In order to validate the results obtained from the network

analysis we evaluated the most highly ranked gene, SOD2, as a

potential biomarker for PD. Relative abundance of SOD2 mRNA

was measured in whole blood of PD patients compared to HC

from samples obtained from two independent clinical trials, HBS

and PROBE. Quantitative PCR assays revealed that SOD2
mRNA is significantly upregulated in blood of PD patients

compared to HC in both cohorts of study participants, although

significant overlap in expression levels was observed between PD

and controls (Figure 3A and B). To evaluate the diagnostic

accuracy of SOD2 in distinguishing PD patients from HC, ROC

curve analysis was performed. As shown in Figure 3C, the AUC

values for SOD2 was 0.69.

Pearson correlation analysis demonstrated that relative abun-

dance of SOD2 was independent of other covariates including age

(r = 20.13, p = 0.40), and sex (r = 20.03, p = 0.79) in both cohorts

of patients and BMI (r = 0.18, p = 0.21) in the HBS cohort.

Correlation analysis of SOD2 mRNA expression and Hoehn and

Yahr stage was not significant (r = 0.04, p = 0.73). Correlation with

medication was not determined since most of the patients with PD

were medicated with several drugs and the number of untreated

patients was too small to reliably detect a significant change.

Discussion

We have recently demonstrated that shared molecular networks

between PD and T2DM can be exploited to identify highly

accurate biomarkers for PD [15]. This result along with other

studies investigating the relationship between PD and T2DM

suggested that a system-level understanding of the comorbidity

between both diseases might improve the clinical management of

PD and may elucidate potential therapeutic targets [5,13].

In our previous study the network analysis was restricted to the

intersection of genes between PD and T2DM identified by

GWAS. However, this approach is limited given that a large

number of genes fail to exceed the genome-wide statistical

threshold of significance and are therefore neglected. One

example was the failure to recognize the association of a

polymorphism in PPARG in T2DM by other studies because of

its modest effect on susceptibility for T2DM [34]. In addition, very

few causative genes of disease have been proven to be useful for

clinical diagnosis [35]. For example, mutations in LRRK2 and DJ-
1 are implicated in hereditary PD, but changes in their mRNA or

protein expression levels in blood may not be useful diagnostic

biomarkers for early stage PD [36,37]. Here we expanded our

analysis to integrate data from publicly available databases that

includes a wide range of experimental designs including but not

limited to pharmacogenomics, toxicogenomics, and other exper-

iments in addition to GWAS.

We identified 84 genes shared between PD and T2DM by

interrogating several disease-gene databases. Biological and

functional analysis of these genes identified shared dysregulated

pathways including nitric oxide biosynthesis, regulation of glucose,

lipid and carbohydrate metabolism, insulin secretion and inflam-

mation. Shared genes between both diseases were prioritized using

a RWR within the human FLN. Not surprisingly, highly ranked

genes were representative of the most significant dysregulated

pathways. For example, AKT1, IGF1 and TP53 are involved in

insulin signaling and glucose homeostasis [38,39]. In this regard,

dysregulation of glucose metabolism was identified as an early

event in sporadic PD and it has been hypothesized that alpha

synuclein (SNCA) may play a role in this process [40]. In addition,

genes associated with inflammation including TNF and IL6 are

among the most highly ranked genes. In this context, neuroin-

flammation is associated with the pathophysiology of PD [41,42].

HNF4A was also among the top 10 genes in the prioritized list.

Interestingly, HNF4A may also play a role in intestinal lipid

metabolism, oxidative stress and inflammation, processes that are

implicated in both chronic diseases [43]. Collectively, these

findings are consistent with previous studies that highlight the

significant convergence of dysregulated pathways in PD and

T2DM [4,15,44].
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We further evaluated a highly ranked gene, SOD2 in blood of

patients with PD from two independent cohorts of study

participants. Relative abundance of SOD2 was upregulated in

blood of PD patients compared to healthy individuals. SOD2 is a

mitochondrial enzyme that protects against oxidative stress by

converting superoxide radicals to molecular oxygen and hydrogen

peroxide. Given its antioxidant capacity, it has been implicated in

the pathogenesis of PD. For example, inactivation of SOD2

increases mitochondrial ROS production in in vitro models of PD

[45]. Moreover, SOD2 protein levels are increased in the frontal

cortex of PD patients [46]. In the context of diabetes, increased

levels of SOD2 mRNA have been found in skeletal muscle of

patients with T2DM [47]. In addition, SOD2 has been associated

to be involved in inflammation [48], insulin signaling and glucose

metabolism[49,50], and lipid metabolism and peroxidation [51],

processes that were identified dysregulated in the network analysis.

Therefore, it is not surprising that SOD2 was the most highly

ranked gene by the prioritization method.

Recently, drugs to treat diabetic patients, metformin-sulfonyl-

urea and exenatide have shown promise in PD patients [52,53]. In

fact, improvement of motor and cognitive functions persists one

year after the treatment with exenatide [54]. Interestingly, diabetic

drugs are known to interact with SOD2. For example, metformin

treatment results in an increased expression of SOD2 mRNA in

human endothelial cells [55]. Troglitazone treatment, another

anti-diabetic and anti-inflammatory drug, results in decreased

expression of SOD2 mRNAs in cellular models [56,57]. In

addition, gliclazide treatment, an oral sulfonylurea hypoglycemic

agent, results in decreased protein expression of SOD2 [58], and

rosiglitazone, an insulin sensitizer, increased SOD2 protein

expression in retinal cells from mice [59]. Based on these

observations, expression of SOD2 in blood may be useful to

evaluate the therapeutic effect of anti-diabetic drugs in PD

patients.

This study has several strengths and limitations. Biomarkers

obtained from microarray studies may be data set specific and not

indicative of the underlying disease pathology. In this context, our

integrated network approach provides a framework to identify and

prioritize PD biomarkers involved in common dysregulated

pathways. Another strength is the replication of this biomarker

in two independent cohorts of patients. However, there are several

limitations and potential confounding factors. For example,

although we have found that GAPDH mRNA expression in

blood is stable in previous studies [15,16,27,60], replication of this

biomarker using several reference genes for normalization is

desirable [61]. In addition, differences in blood counts and PD

medications may bias gene expression results. Thus, evaluation of

SOD2 mRNA in drug-naı̈ve PD patients and in a large well-

characterized prospective study will be important to determine its

clinical utility.

In summary, our study demonstrates that integration of shared

molecular networks provides a useful framework to prioritize

candidate biomarkers in a biologically relevant context. Remark-

ably, we demonstrate that expression of a highly ranked gene

identified within shared dysregulated pathways can be used as

diagnostic marker for PD. We foresee integrated network

approaches will provide a better understanding of the underlying

disease mechanism and facilitate the discovery of accurate

biomarkers and therapeutic targets. In this regard, a network-

based approach was useful to identify a neuroprotective agent,

alvespimycin (17-DMAG), in PD [25]. Although the prioritization

method presented in this study has been evaluated in the specific

case of PD-T2DM, other disease-disease associations may be

studied following this protocol. For instance, the construction of

shared genes and protein networks have facilitated the under-

standing of other disease-disease associations such as asthma and

tuberculosis [32] and artherosclerosis-induced ocular diseases [33].

Thus, network analysis of disease comorbidities may reveal novel

diagnostic biomarkers and therapeutic strategies.

Future studies will be aimed to replicate these findings in

samples from non-medicated and patients at risk of PD and to

evaluate other potential candidate biomarkers found in this study.
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score.

(DOC)

Acknowledgments

We are grateful to the individuals and researchers who participated in the

PROBE and HBS studies.

Author Contributions

Conceived and designed the experiments: JAP JAS. Performed the

experiments: JAS. Analyzed the data: JAP JAS. Contributed reagents/

materials/analysis tools: CRS. Wrote the paper: JAP JAS. Reviewed

manuscript: CRS.

References

1. Scheele C, Nielsen AR, Walden TB, Sewell DA, Fischer CP, et al. (2007) Altered

regulation of the PINK1 locus: a link between type 2 diabetes and

neurodegeneration? FASEB journal: official publication of the Federation of

American Societies for Experimental Biology 21: 3653–3665.

2. Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, et al. (2011) Diabetes

and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes

care 34: 2614–2623.

3. Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, et al. (2013) Diabetes

and risk of Parkinson’s disease. Movement disorders: official journal of the

Movement Disorder Society 28: 257.

4. Santiago JA, Potashkin JA (2013) Shared dysregulated pathways lead to

Parkinson’s disease and diabetes. Trends in molecular medicine 19: 176–186.

5. Santiago JA, Potashkin JA (2014) System-based approaches to decode the

molecular links in Parkinson’s disease and diabetes. Neurobiology of disease.

SOD2 mRNA Is a Biomarker for Parkinson’s Disease

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109042



6. D’Amelio M, Ragonese P, Callari G, Di Benedetto N, Palmeri B, et al. (2009)

Diabetes preceding Parkinson’s disease onset. A case-control study. Parkinson-

ism & related disorders 15: 660–664.

7. Lu L, Fu DL, Li HQ, Liu AJ, Li JH, et al. (2014) Diabetes and risk of Parkinson’s

disease: an updated meta-analysis of case-control studies. PloS one 9: e85781.

8. Palacios N, Gao X, McCullough ML, Jacobs EJ, Patel AV, et al. (2011) Obesity,

diabetes, and risk of Parkinson’s disease. Movement disorders: official journal of

the Movement Disorder Society 26: 2253–2259.

9. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, et al.

(2012) Meta-analysis of early nonmotor features and risk factors for Parkinson

disease. Annals of neurology 72: 893–901.

10. Kotagal V, Albin RL, Muller ML, Koeppe RA, Frey KA, et al. (2013) Diabetes

is associated with postural instability and gait difficulty in Parkinson disease.

Parkinsonism & related disorders 19: 522–526.

11. Bosco D, Plastino M, Cristiano D, Colica C, Ermio C, et al. (2012) Dementia is

associated with Insulin Resistance in patients with Parkinson’s disease. Journal of

the neurological sciences 315: 39–43.

12. Aviles-Olmos I, Limousin P, Lees A, Foltynie T (2013) Parkinson’s disease,

insulin resistance and novel agents of neuroprotection. Brain: a journal of

neurology 136: 374–384.

13. Wang L, Zhai YQ, Xu LL, Qiao C, Sun XL, et al. (2014) Metabolic

inflammation exacerbates dopaminergic neuronal degeneration in response to

acute MPTP challenge in type 2 diabetes mice. Experimental neurology 251:

22–29.

14. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, et al. (2014)

Mitochondrial quality control systems sustain brain mitochondrial bioenergetics

in early stages of type 2 diabetes. Molecular and cellular biochemistry.

15. Santiago JA, Potashkin JA (2013) Integrative network analysis unveils convergent

molecular pathways in Parkinson’s disease and diabetes. PloS one 8: e83940.

16. Santiago JA, Potashkin JA (2014) A network approach to diagnostic biomarkers

in progressive supranuclear palsy. Movement disorders: official journal of the

Movement Disorder Society 29: 550–555.

17. Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, et al. (2011)

Gene-disease network analysis reveals functional modules in mendelian, complex

and environmental diseases. PloS one 6: e20284.

18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a

software environment for integrated models of biomolecular interaction

networks. Genome research 13: 2498–2504.

19. Peng K, Xu W, Zheng J, Huang K, Wang H, et al. (2013) The Disease and

Gene Annotations (DGA): an annotation resource for human disease. Nucleic

acids research 41: D553–560.

20. Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, et al. (2009)

Exploring the human genome with functional maps. Genome research 19:

1093–1106.

21. Wang L, Khankhanian P, Baranzini SE, Mousavi P (2011) iCTNet: a Cytoscape

plugin to produce and analyze integrative complex traits networks. BMC

bioinformatics 12: 380.

22. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, et al. (2010)

GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop.

Bioinformatics 26: 2927–2928.

23. Le DH, Kwon YK (2012) GPEC: a Cytoscape plug-in for random walk-based

gene prioritization and biomedical evidence collection. Computational biology

and chemistry 37: 17–23.

24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proceedings of the National Academy of

Sciences of the United States of America 102: 15545–15550.

25. Gao L, Zhao G, Fang JS, Yuan TY, Liu AL, et al. (2013) Discovery of the

neuroprotective effects of alvespimycin by computational prioritization of

potential anti-parkinson agents. The FEBS journal.

26. Ding H, Sarokhan AK, Roderick SS, Bakshi R, Maher NE, et al. (2011)

Association of SNCA with Parkinson: replication in the Harvard NeuroDiscov-

ery Center Biomarker Study. Movement disorders: official journal of the

Movement Disorder Society 26: 2283–2286.

27. Potashkin JA, Santiago JA, Ravina BM, Watts A, Leontovich AA (2012)

Biosignatures for Parkinson’s disease and atypical parkinsonian disorders

patients. PloS one 7: e43595.

28. Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ, et al. (2007) Molecular

markers of early Parkinson’s disease based on gene expression in blood.

Proceedings of the National Academy of Sciences of the United States of

America 104: 955–960.

29. Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, et al. (2014) Low

clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinico-

pathologic study. Neurology.

30. Rajput AH, Rajput A (2014) Accuracy of Parkinson disease diagnosis unchanged

in 2 decades. Neurology.

31. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for

prioritization of candidate disease genes. American journal of human genetics

82: 949–958.

32. Bragina EY, Tiys ES, Freidin MB, Koneva LA, Demenkov PS, et al. (2014)

Insights into pathophysiology of dystropy through the analysis of gene networks:

an example of bronchial asthma and tuberculosis. Immunogenetics 66: 457–465.

33. Gupta A, Mohanty P, Bhatnagar S (2014) Integrative analysis of ocular

complications in atherosclerosis unveils pathway convergence and crosstalk.

Journal of receptor and signal transduction research: 1–16.

34. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, et al.

(2000) The common PPARgamma Pro12Ala polymorphism is associated with

decreased risk of type 2 diabetes. Nature genetics 26: 76–80.

35. Novelli G, Ciccacci C, Borgiani P, Papaluca Amati M, Abadie E (2008) Genetic

tests and genomic biomarkers: regulation, qualification and validation. Clinical

cases in mineral and bone metabolism: the official journal of the Italian Society

of Osteoporosis, Mineral Metabolism, and Skeletal Diseases 5: 149–154.

36. Dzamko N, Chua G, Ranola M, Rowe DB, Halliday GM (2013) Measurement

of LRRK2 and Ser910/935 phosphorylated LRRK2 in peripheral blood

mononuclear cells from idiopathic Parkinson’s disease patients. Journal of

Parkinson’s disease 3: 145–152.

37. Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, et al. (2012) DJ-1

isoforms in whole blood as potential biomarkers of Parkinson disease. Scientific

reports 2: 954.

38. Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and

communication between the p53 and IGF-1-AKT-TOR signal transduction

pathways. Genes & development 20: 267–275.

39. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. Journal of

molecular medicine 89: 237–245.

40. Dunn L, Allen GF, Mamais A, Ling H, Li A, et al. (2014) Dysregulation of

glucose metabolism is an early event in sporadic Parkinson’s disease.

Neurobiology of aging 35: 1111–1115.

41. Przedborski S (2010) Inflammation and Parkinson’s disease pathogenesis.
Movement disorders: official journal of the Movement Disorder Society 25

Suppl 1: S55–57.

42. Nolan YM, Sullivan AM, Toulouse A (2013) Parkinson’s disease in the nuclear

age of neuroinflammation. Trends in molecular medicine 19: 187–196.

43. Marcil V, Seidman E, Sinnett D, Boudreau F, Gendron FP, et al. (2010)

Modification in oxidative stress, inflammation, and lipoprotein assembly in

response to hepatocyte nuclear factor 4alpha knockdown in intestinal epithelial

cells. The Journal of biological chemistry 285: 40448–40460.

44. Menon R, Farina C (2011) Shared molecular and functional frameworks among

five complex human disorders: a comparative study on interactomes linked to

susceptibility genes. PloS one 6: e18660.

45. Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, et al. (2012)

Human SOD2 modification by dopamine quinones affects enzymatic activity by

promoting its aggregation: possible implications for Parkinson’s disease. PloS one

7: e38026.

46. Ferrer I, Perez E, Dalfo E, Barrachina M (2007) Abnormal levels of prohibitin

and ATP synthase in the substantia nigra and frontal cortex in Parkinson’s

disease. Neuroscience letters 415: 205–209.

47. Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P, et al. (2008) Elevated

toll-like receptor 4 expression and signaling in muscle from insulin-resistant

subjects. Diabetes 57: 2595–2602.

48. Schramm F, Kern A, Barthel C, Nadaud S, Meyer N, et al. (2012) Microarray

analyses of inflammation response of human dermal fibroblasts to different

strains of Borrelia burgdorferi sensu stricto. PloS one 7: e40046.

49. Soderberg JA, Birse RT, Nassel DR (2011) Insulin production and signaling in

renal tubules of Drosophila is under control of tachykinin-related peptide and

regulates stress resistance. PloS one 6: e19866.

50. Kang L, Dai C, Lustig ME, Bonner JS, Mayes WH, et al. (2014) Heterozygous

SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but not Insulin

Action in High Fat-Fed Mice. Diabetes.

51. Singh BK, Kumar A, Ahmad I, Kumar V, Patel DK, et al. (2011) Oxidative

stress in zinc-induced dopaminergic neurodegeneration: implications of

superoxide dismutase and heme oxygenase-1. Free radical research 45: 1207–

1222.

52. Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, et al. (2013)

Exenatide and the treatment of patients with Parkinson’s disease. The Journal of

clinical investigation 123: 2730–2736.

53. Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, et al. (2012) Metformin-

inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring

with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism & related

disorders 18: 753–758.

54. Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, et al.

(2014) Motor and Cognitive Advantages Persist 12 Months After Exenatide

Exposure in Parkinson’s Disease. Journal of Parkinson’s disease.

55. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, et al. (2006)

Activation of AMP-activated protein kinase reduces hyperglycemia-induced

mitochondrial reactive oxygen species production and promotes mitochondrial

biogenesis in human umbilical vein endothelial cells. Diabetes 55: 120–127.

56. Lauer B, Tuschl G, Kling M, Mueller SO (2009) Species-specific toxicity of

diclofenac and troglitazone in primary human and rat hepatocytes. Chemico-

biological interactions 179: 17–24.

SOD2 mRNA Is a Biomarker for Parkinson’s Disease

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109042



57. Ruan H, Pownall HJ, Lodish HF (2003) Troglitazone antagonizes tumor

necrosis factor-alpha-induced reprogramming of adipocyte gene expression by

inhibiting the transcriptional regulatory functions of NF-kappaB. The Journal of

biological chemistry 278: 28181–28192.

58. Onozato ML, Tojo A, Goto A, Fujita T (2004) Radical scavenging effect of

gliclazide in diabetic rats fed with a high cholesterol diet. Kidney international

65: 951–960.

59. Doonan F, Wallace DM, O’Driscoll C, Cotter TG (2009) Rosiglitazone acts as a

neuroprotectant in retinal cells via up-regulation of sestrin-1 and SOD-2. Journal
of neurochemistry 109: 631–643.

60. Santiago JA, Scherzer CR, Potashkin JA (2013) Specific splice variants are

associated with Parkinson’s disease. Movement disorders: official journal of the
Movement Disorder Society 28: 1724–1727.

61. Stamova BS, Apperson M, Walker WL, Tian Y, Xu H, et al. (2009)
Identification and validation of suitable endogenous reference genes for gene

expression studies in human peripheral blood. BMC medical genomics 2: 49.

SOD2 mRNA Is a Biomarker for Parkinson’s Disease

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109042


