5,442 research outputs found

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Model for the structure function constant for index of refraction fluctuations in Rayleigh-Benard turbulence

    Full text link
    A model for the structure function constant associated with index of refraction fluctuations in Rayleigh-Benard turbulence is developed. The model is based upon the following assumptions: (1) the turbulence is homogeneous and isotropic at or near the mid-plane, (2) the rate of production is in balance with the rate of dissipation, (3) an inertial region exists, and (4) estimates for the rate of dissipation of temperature fluctuations and of turbulent kinetic energy can be made by assuming that the large-scale turbulence is dissipated in one eddy turnover time. From these assumptions, the dependence of the structure function on the geometry, heat flux, and the properties of the fluid is obtained. The model predicts that the normalized structure function constant is independent of the Rayleigh number. To verify the model, numerical simulations of Rayleigh-Benard turbulence were performed using two different approaches: an in-house code based on a pseudo-spectral method, and a finite volume code which employs a model for the smallest scales of the turbulence. The model was found to agree with the results of the simulations, thereby lending support for the assumptions underlying the theory.Comment: 25 pages, 10 figures, 1 tabl

    Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion

    Get PDF
    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of predicting and simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred

    Geometric scaling in the spectrum of an electron captured by a stationary finite dipole

    Full text link
    We examine the energy spectrum of a charged particle in the presence of a {\it non-rotating} finite electric dipole. For {\emph{any}} value of the dipole moment pp above a certain critical value p_{\mathrm{c}}$ an infinite series of bound states arises of which the energy eigenvalues obey an Efimov-like geometric scaling law with an accumulation point at zero energy. These properties are largely destroyed in a realistic situation when rotations are included. Nevertheless, our analysis of the idealised case is of interest because it may possibly be realised using quantum dots as artificial atoms.Comment: 5 figures; references added, outlook section reduce

    Chaos and localization in the wavefunctions of complex atoms NdI, PmI and SmI

    Full text link
    Wavefunctions of complex lanthanide atoms NdI, PmI and SmI, obtained via multi-configuration Dirac-Fock method, are analyzed for density of states in terms of partial densities, strength functions (Fk(E)F_k(E)), number of principal components (ξ2(E)\xi_2(E)) and occupancies (\lan n_\alpha \ran^E) of single particle orbits using embedded Gaussian orthogonal ensemble of one plus two-body random matrix ensembles [EGOE(1+2)]. It is seen that density of states are in general multi-modal, Fk(E)F_k(E)'s exhibit variations as function of the basis states energy and ξ2(E)\xi_2(E)'s show structures arising from localized states. The sources of these departures from EGOE(1+2) are investigated by examining the partial densities, correlations between Fk(E)F_k(E), ξ2(E)\xi_2(E) and \lan n_\alpha \ran^E and also by studying the structure of the Hamiltonian matrices. These studies point out the operation of EGOE(1+2) but at the same time suggest that weak admixing between well separated configurations should be incorporated into EGOE(1+2) for more quantitative description of chaos and localization in NdI, PmI and SmI.Comment: There are 9 figure

    Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components

    Get PDF
    We show that Fresnel zone plates, fabricated in a solid surface, can sharply focus atomic Bose-Einstein condensates that quantum reflect from the surface or pass through the etched holes. The focusing process compresses the condensate by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing dynamics are insensitive to quantum fluctuations of the atom cloud and largely preserve the condensates' coherence, suggesting applications in passive atom-optical elements, for example zone plate lenses that focus atomic matter waves and light at the same point to strengthen their interaction. We explore transmission zone-plate focusing of alkali atoms as a route to erasable and scalable lithography of quantum electronic components in two-dimensional electron gases embedded in semiconductor nanostructures. To do this, we calculate the density profile of a two-dimensional electron gas immediately below a patch of alkali atoms deposited on the surface of the nanostructure by zone-plate focusing. Our results reveal that surface-induced polarization of only a few thousand adsorbed atoms can locally deplete the electron gas. We show that, as a result, the focused deposition of alkali atoms by existing zone plates can create quantum electronic components on the 50 nm scale, comparable to that attainable by ion beam implantation but with minimal damage to either the nanostructure or electron gas.Comment: 13 pages, 7 figure

    Measurements of one-point statistics in 21 cm intensity maps via foreground avoidance strategy

    Get PDF
    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21 cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during reionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21 cm one-point statistics through a foreground avoidance strategy. Leveraging the well-known characteristic of foreground contamination in which it occupies a wedge-shape region in k-space, we apply a foreground wedge-cut filter that removes the contaminated modes from a mock data set based on the Hydrogen Epoch of Reionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with wedge-cutting over different frequency bandwidths and varying degrees of removal that correspond to different assumptions on the extent of the foreground sources on the sky and leakage from the Fourier Transform window function. We find that the centre of the band is the least biased from wedge-cutting while the edges of the band are unusable due to being highly down-weighted by the window function. Based on this finding, we introduce a rolling filter method that allows reconstruction of an optimal wedge-cut 21~cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the rise in skewness and kurtosis near the end of reionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.Comment: 12 pages, 8 figures, submitted to MNRA

    Resonant Inelastic X-ray Scattering Studies of Elementary Excitations

    Full text link
    In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress as a spectroscopic technique. This is a direct result of the availability of high-brilliance synchrotron X-ray radiation sources and of advanced photon detection instrumentation. The technique's unique capability to probe elementary excitations in complex materials by measuring their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of experimental photon science. We review both the experimental and theoretical RIXS investigations of the past decade, focusing on those determining the low-energy charge, spin, orbital and lattice excitations of solids. We present the fundamentals of RIXS as an experimental method and then review the theoretical state of affairs, its recent developments and discuss the different (approximate) methods to compute the dynamical RIXS response. The last decade's body of experimental RIXS data and its interpretation is surveyed, with an emphasis on RIXS studies of correlated electron systems, especially transition metal compounds. Finally, we discuss the promise that RIXS holds for the near future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure

    Theory of Crystalline Electric Field and Kondo Effect in Pr Skutterudites

    Full text link
    Possible Kondo effect in Pr skutterudite is studied with attention to characteristic features of low-lying crystalline electric field (CEF) levels and the conduction band. A mechanism for the small CEF splitting between a singlet and a triplet is proposed as combination of the point-charge interaction and hybridization of 4f with ligand p states. Provided 4f^3 configurations dominate over 4f^1 as intermediate states, p-f hybridization favors the triplet, while point-charge interaction favors the singlet. For realistic parameters for hybridization as well as 4f^1 and 4f^3 levels, these singlet and triplet can form a nearly degenerate pseudo-quartet. It is found that one of two spin 1/2 objects composing the pseudo-quartet has a ferromagnetic exchange, while the other has an antiferromagnetic exchange with conduction electrons. The magnitude of each effective exchange depends strongly on a parameter characterizing the triplet wave function under the T_h symmetry. It is argued that differences of this parameter among Pr skutterdudites are responsible for the apparent diversity of their physical properties. Numerical renormalization group is used to derive the renormalization flows going toward singlet, doublet, triplet or quaret according to the CEF splitting and exchange interactions.Comment: 19 pages, 6 figures, to be published in Special Invited Section (Kondo Effect) of Journal of Physical Society of Japa
    corecore