249 research outputs found

    Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Management of Low-Grade Gliomas and Radiation Necrosis: A Single-Institution Case Series

    Get PDF
    Background: Laser interstitial thermal therapy (LITT) has emerged as a minimally invasive treatment modality for ablation of low-grade glioma (LGG) and radiation necrosis (RN). Objective: To evaluate the efficacy, safety, and survival outcomes of patients with radiographically presumed recurrent or newly diagnosed LGG and RN treated with LITT. Methods: The neuro-oncological database of a quaternary center was reviewed for all patients who underwent LITT for management of LGG between 1 January 2013 and 31 December 2020. Clinical data including demographics, lesion characteristics, and clinical and radiographic outcomes were collected. Kaplan-Meier analyses comprised overall survival (OS) and progression-free survival (PFS). Results: Nine patients (7 men, 2 women; mean [SD] age 50 [16] years) were included. Patients underwent LITT at a mean (SD) of 11.6 (8.5) years after diagnosis. Two (22%) patients had new lesions on radiographic imaging without prior treatment. In the other 7 patients, all (78%) had surgical resection, 6 (67%) had intensity-modulated radiation therapy and chemotherapy, respectively, and 4 (44%) had stereotactic radiosurgery. Two (22%) patients had lesions that were wild-type IDH1 status. Volumetric assessment of preoperative T1-weighted contrast-enhancing and T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences yielded mean (SD) lesion volumes of 4.1 (6.5) cm(3) and 26.7 (27.9) cm(3), respectively. Three (33%) patients had evidence of radiographic progression after LITT. The pooled median (IQR) PFS for the cohort was 52 (56) months, median (IQR) OS after diagnosis was 183 (72) months, and median (IQR) OS after LITT was 52 (60) months. At the time of the study, 2 (22%) patients were deceased. Conclusions: LITT is a safe and effective treatment option for management of LGG and RN, however, there may be increased risk of permanent complications with treatment of deep-seated subcortical lesions

    Development of Body Emotion Perception in Infancy: From Discrimination to Recognition

    Get PDF
    Research suggests that infants progress from discrimination to recognition of emotions in faces during the first half year of life. It is unknown whether the perception of emotions from bodies develops in a similar manner. In the current study, when presented with happy and angry body videos and voices, 5-month-olds looked longer at the matching video when they were presented upright but not when they were inverted. In contrast, 3.5-month-olds failed to match even with upright videos. Thus, 5-month-olds but not 3.5-month-olds exhibited evidence of recognition of emotions from bodies by demonstrating intermodal matching. In a subsequent experiment, younger infants did discriminate between body emotion videos but failed to exhibit an inversion effect, suggesting that discrimination may be based on low-level stimulus features. These results document a developmental change from discrimination based on non-emotional information at 3.5 months to recognition of body emotions at 5 months. This pattern of development is similar to face emotion knowledge development and suggests that both the face and body emotion perception systems develop rapidly during the first half year of life

    Further Evidence of Early Development of Attention to Dynamic Facial Emotions: Reply to Grossmann and Jessen

    Get PDF
    Adults exhibit enhanced attention to negative emotions like fear, which is thought to be an adaptive reaction to emotional information. Previous research, mostly conducted with static faces, suggests that infants exhibit an attentional bias toward fearful faces only at around 7 months of age. In a recent study (Journal of Experimental Child Psychology, 2016, Vol. 147, pp. 100–110), we found that 5-month-olds also exhibit heightened attention to fear when tested with dynamic face videos. This indication of an earlier development of an attention bias to fear raises questions about developmental mechanisms that have been proposed to underlie this function. However, Grossmann and Jessen (Journal of Experimental Child Psychology, 2016, Vol. 153, pp. 149–154) argued that this result may have been due to differences in the amount of movement in the videos rather than a response toemotional information. To examine this possibility, we tested a new sample of 5-month-olds exactly as in the original study (Heck, Hock, White, Jubran, & Bhatt, 2016) but with inverted faces. We found that the fear bias seen in our study was no longer apparent with inverted faces. Therefore, it is likely that infants’ enhanced attention to fear in our study was indeed a response to emotions rather than a reaction to arbitrary low-level stimulus features. This finding indicates enhanced attention to fear at 5 months and underscores the need to find mechanisms that engender the development of emotion knowledge early in life

    Visual Scanning of Males and Females in Infancy

    Get PDF
    This study addressed the development of attention to information that is socially relevant to adults by examining infants\u27 (n = 64) scanning patterns of male and female bodies. Infants exhibited systematic attention to regions associated with sex-related scanning by adults, with 3.5-and 6.5-month-olds looking longer at the torso of females than males and longer at the legs of males than females. However, this pattern of looking was not found when infants were tested on headless bodies in Experiment 2, which suggests that infants\u27 differential gaze pattern in Experiment 1 was not due to low-level stimulus features, such as clothing, and also indicates that facial/head information is necessary for infants to exhibit sex-specific scanning. We discuss implications for models of face and body knowledge development

    The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones

    Get PDF
    The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms

    Increased insulin resistance due to long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection

    Get PDF
    Objective: Some months after the remission of acute COVID-19, some individuals show depressive symptoms, which are predicted by increased peak body temperature (PBT) and decreased blood oxygen saturation (SpO2). The present study aimed to examine data on whether long COVID is associated with increased insulin resistance (IR) in association with neuroimmune and oxidative (NIO) processes during the acute infectious and long COVID phases. Methods: This case-control, retrospective cohort study used the Homeostasis Model Assessment 2 (HOMA2) calculator© to compute β-cell function (HOMA2%B) and insulin sensitivity (HOMA2%S) and resistance (HOMA2-IR) and administered the Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HAMD) to 86 patients with long COVID and 39 controls. Results: Long COVID (3-4 months after the acute infection) is accompanied by increased HOMA2-IR, fasting blood glucose (FBG), and insulin levels; 33.7% of the patients vs. 0% of the controls had HOMA2-IR values > 1.8, suggesting IR. Increased IR was predicted by PBT during acute infection and associated with depressive symptoms above and beyond the effects of NIO pathways (nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 [NLRP3] inflammasome, myeloperoxidase [MPO], protein oxidation). There were no significant associations between increased IR and the activated NIO pathways during long COVID. Conclusion: Long COVID is associated with new-onset IR, which may contribute to onset of depressive symptoms due to long COVID by enhancing overall neurotoxicity

    Comparison of non-invasive to invasive oxygenation ratios for diagnosing acute respiratory distress syndrome following coronary artery bypass graft surgery: a prospective derivation-validation cohort study

    Get PDF
    Objective: To determine if non-invasive oxygenation indices, namely peripheral capillary oxygen saturation (SpO2)/ fraction of inspired oxygen (Fi O2) and partial pressure of alveolar oxygen (PAO2)/Fi O2 may be used as effective surrogates for the partial pressure of arterial oxygen (PaO2)/Fi O2. Also, to determine the SpO2/Fi O2 and PAO2/Fi O2 values that correspond to PaO2/Fi O2 thresholds for identifying acute respiratory distress syndrome (ARDS) in patients following coronary artery bypass graft (CABG) surgery. Methods: A prospective derivation-validation cohort study in the Open-Heart ICU of an academic teaching hospital. Recorded variables included patient demographics, ventilator settings, chest radiograph results, and SPO2, PaO2, PAO2, SaO2, and Fi O2. Linear regression modeling was used to quantify the relationship between indices. Receiver operating characteristic (ROC) curves were used to determine the sensitivity and specificity of the threshold values. Results: One-hundred seventy-five patients were enrolled in the derivation cohort, and 358 in the validation cohort. The SPO2/Fi O2 and PAO2/Fi O2 ratios could be predicted well from PaO2/Fi O2, described by the linear regression models SPO2/Fi O2 = 71.149 + 0.8PF and PAO2/Fi O2 = 38.098 + 2.312PF, respectively. According to the linear regression equation, a PaO2/Fi O2 ratio of 300 equaled an SPO2/Fi O2 ratio of 311 (R2 0.857, F 1035.742, < 0.0001) and a PAO2/Fi O2 ratio of 732 (R2 0.576, F 234.887, < 0.0001). The SPO2/Fi O2 threshold of 311 had 90% sensitivity, 80% specificity, LR+ 4.50, LR- 0.13, PPV 98, and NPV 42.1 for the diagnosis of mild ARDS. The PAO2/Fi O2 threshold of 732 had 86% sensitivity, 90% specificity, LR+ 8.45, LR- 0.16, PPV 98.9, and NPV 36 for the diagnosis of mild ARDS. SPO2/ Fi O2 had excellent discrimination ability for mild ARDS (AUC ± SE = 0.92 ± 0.017; 95% CI 0.889 to 0.947) as did PAO2/ Fi O2 (AUC ± SE = 0.915 ± 0.018; 95% CI 0.881 to0.942). Conclusions: PaO2 and SaO2 correlated in the diagnosis of ARDS, with a PaO2/Fi O2 of 300 correlating to an SPO2/ Fi O2 of 311 (Sensitivity 90%, Specificity 80%). The SPO2/ Fi O2 ratio may allow for early real-time rapid identification of ARDS, while decreasing the cost, phlebotomy, blood loss, pain, skin breaks, and vascular punctures associated with serial arterial blood gas measurements
    • …
    corecore