25 research outputs found

    Toward Good Read-Across Practice (GRAP) guidance.

    Get PDF
    Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document aims to summarize the state-of-the-art, summarizes insights learned from reviewing ECHA published decisions as far as the relative successes/pitfalls surrounding read-across under REACH and compile the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015

    Endocrine disruptors and spontaneous premature labor: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premature labor is a poorly understood condition. Estrogen is thought to play a key role and therefore the labor process may be affected by endocrine disruptors. We sought to determine whether or not an environmental toxicant, DDE, or dietary derived endocrine disruptors, daidzein and genistein, are associated with spontaneous preterm labor.</p> <p>Methods</p> <p>Cases were defined as primiparous patients having a preterm delivery at or before 35 weeks following the spontaneous onset of labor. Controls were defined as primiparous women who delivered on the same day as the cases but at term gestation.</p> <p>Over approximately 1 year, 26 cases and 52 controls were recruited. Subjects agreed to have blood tests on day one postpartum for DDE and for the phytoestrogens genistein and daidzein.</p> <p>Results</p> <p>The mean concentration of DDE was similar in the case and control groups: 4.29 vs 4.32 ng/g lipid p = .85. In the case group, 13/26 had detectable levels of daidzein (range 0.20 – 1.56 ng/ml) compared to 25/52 controls (range 0.21 – 3.26 ng/ml). The mean concentration of daidzein was similar in cases compared to controls: 0.30 vs .34 ng/ml p = 0.91. Of the case group,14/26 had detectable levels of genistein (range 0.20 – 2.19 ng/ml) compared to 32/52 controls (range 0.21 – 2.55 ng/ml). The mean concentration of genistein was similar in cases compared to controls: 0.39 vs 0.31 ng/ml, p = 0.61.</p> <p>Conclusion</p> <p>The serum levels of DDE in this population were found to be low.</p> <p>There appears to be no relationship between serum concentrations of DDE, daidzein, and genistein and spontaneous preterm labor in our population. The inability to identify an effect may be related to the comparatively low concentrations of DDE in our population and the rapid and variable reduction of phytoestrogens from women in labor.</p

    GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations

    Full text link
    In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems
    corecore