512 research outputs found

    Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol

    Get PDF
    Graphitic carbon nitride enriched with ZnO or Fe2O3 were synthesized using a simple one-pot mechanochemical method. By using this method, composite samples were synthetized without the production of any potentially hazardous waste. The synthesized materials were used as catalysts during the selective photo-oxidation of benzyl alcohol. Both composite materials displayed an enhancement of the activity and benzaldehyde selectivity with respect to the pure g-C3N4. The most active catalyst was Fe2O3/g-C3N4. The conversion and benzaldehyde selectivity of this sample were 20 and 70 %, respectively. It showed a considerable increase of the benzaldehyde selectivity compared to the pure g-C3N4 and TiO2 P25 commercial reference. A complete structural and electronic characterization using Scanning Electron Microscopy-Energy Dispersive (SEM-EDX), BET measurements, X-ray diffraction (XRD), X-ray Photoelectron (XPS), and UV–visible spectroscopies was carried out. The characterization analysis pointed out the leading role of the crystallinity and surface concentration over the activity and benzaldehyde selectivity of the reactio

    Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation

    Get PDF
    TiO2 (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading were synthesized using a simple one-pot mechanochemical method. Photocatalysts were characterized by a number of techniques and their photocatalytic activity was tested in the selective oxidation of benzyl alcohol to benzaldehyde. Extension of light absorption into the visible region was achieved upon titania incorporation. Results indicated that the photocatalytic activity increased with TiO2 loading on the catalysts, with moderate conversion (20%) at high benzaldehyde selectivity (84%) achieved for 5% TiO2-MAGSNC. These findings pointed out a potential strategy for the valorization of lignocellulosic-based biomass under visible light irradiation using designer photocatalytic nanomaterial

    Compound climate-pollution extremes in Santiago de Chile

    Get PDF
    Cities in the global south face dire climate impacts. It is in socioeconomically marginalized urban communities of the global south that the effects of climate change are felt most deeply. Santiago de Chile, a major mid-latitude Andean city of 7.7 million inhabitants, is already undergoing the so-called “climate penalty” as rising temperatures worsen the effects of endemic ground-level ozone pollution. As many cities in the global south, Santiago is highly segregated along socioeconomic lines, which offers an opportunity for studying the effects of concurrent heatwaves and ozone episodes on distinct zones of affluence and deprivation. Here, we combine existing datasets of social indicators and climate-sensitive health risks with weather and air quality observations to study the response to compound heat-ozone extremes of different socioeconomic strata. Attributable to spatial variations in the ground-level ozone burden (heavier for wealthy communities), we found that the mortality response to extreme heat (and the associated further ozone pollution) is stronger in affluent dwellers, regardless of comorbidities and lack of access to health care affecting disadvantaged population. These unexpected findings underline the need of a site-specific hazard assessment and a community-based risk management.</p

    Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol

    Get PDF
    A simple and effective ultrasound-assisted wet impregnation method was developed for the preparation of magnetically separable TiO2/maghemite-silica photo-active nanocomposites. The resulting nanomaterials were characterized by several techniques and subsequently tested for their photocatalytic activities in the liquid phase selective oxidation of benzyl alcohol. An unprecedented selectivity in organic media (90% in acetonitrile) towards benzaldehyde was achieved at a benzyl alcohol conversion of ca. 50%, being remarkably superior in terms of activity to any other supported transition metal catalysts reported to date as well as commercial titania Evonik P-25 photocatalyst

    (E)-1-(2,4-Dihy­droxy­phen­yl)-3-(4-hydroxy­phen­yl)prop-2-en-1-one monohydrate

    Get PDF
    In the title compound, C15H12O4·H2O, the two benzene rings are not coplanar, making a dihedral angle of 7.24 (16)°. An intra­molecular hy­droxy–carbonyl O—H⋯O hydrogen bond occurs. In the crystal, four inter­molecular O—H⋯O hydrogen bonds involving the hy­droxy residues, the carbonyl group and the water mol­ecule lead to the formation of a three-dimensional network. The supra­molecular structure is further stabilized by weak C—H⋯O inter­actions

    A Python Code for Simulating Single Tactile Receptors and the Spiking Responses of Their Afferents

    Get PDF
    This work presents a pieces of Python code to rapidly simulate the spiking responses of large numbers of single cutaneous tactile afferents with millisecond precision. To simulate the spike responses of all the major types of cutaneous tactile afferents, we proposed an electromechanical circuit model, in which a two-channel filter was developed to characterize the mechanical selectivity of tactile receptors, and a spike synthesizer was designed to recreate the action potentials evoked in afferents. The parameters of this model were fitted using previous neurophysiological datasets. Several simulation examples were presented in this paper to reproduce action potentials, sensory adaptation, frequency characteristics and spiking timing for each afferent type. The results indicated that the simulated responses matched previous neurophysiological recordings well. The model allows for a real-time reproduction of the spiking responses of about 4,000 tactile units with a timing precision of &lt;6 ms. The current work provides a valuable guidance to designing highly realistic tactile interfaces such as neuroprosthesis and haptic device

    Evaluation of MODIS-derived estimates of the albedo over the Atacama Desert using ground-based spectral measurements

    Get PDF
    Surface albedo is an important forcing parameter that drives the radiative energy budget as it determines the fraction of the downwelling solar irradiance that the surface reflects. Here we report on ground-based measurements of the spectral albedo (350–2200 nm) carried out at 20 sites across a North–South transect of approximately 1300 km in the Atacama Desert, from latitude 18° S to latitude 30° S. These spectral measurements were used to evaluate remote sensing estimates of the albedo derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). We found that the relative mean bias error (RMBE) of MODIS-derived estimates was within ± 5% of ground-based measurements in most of the Atacama Desert (18–27° S). Although the correlation between MODIS-derived estimates and ground-based measurements remained relatively high (R= 0.94), RMBE values were slightly larger in the southernmost part of the desert (27–30° S). Both MODIS-derived data and ground-based measurements show that the albedo at some bright spots in the Atacama Desert may be high enough (up to 0.25 in visible range) for considerably boosting the performance of bifacial photovoltaic technologies (6–12%)

    Long Non-coding RNAs Contribute to the Inhibition of Proliferation and EMT by Pterostilbene in Human Breast Cancer

    Get PDF
    Background: There is increasing evidence that long non-coding RNAs (lncRNAs) are involved in the process of carcinogenesis and treatment using chemotherapy. Pterostilbene, a phytochemical agent with natural antioxidant and anti-inflammatory properties, has been shown to modulate oncogenic processes in many cancers. However, there has been limited research on the association between pterostilbene and the expression of lncRNAs.Methods: MCF7 breast cancer cells were treated with various concentrations of pterostilbene and their gene expression profile was analyzed by quantitative real-time PCR, Western blotting and immunofluorescence.Results: Treatment with pterostilbene inhibited cell proliferation and epithelial-to-mesenchymal transition (EMT), and increased cell apoptosis, autophagy and ER stress. The Akt/mTOR pathway was downregulated, but p38 MAPK/Erk signaling was activated in cells following treatment with pterostilbene. Pterostilbene increased the expression of the lncRNAs MEG3, TUG1, H19, and DICER1-AS1 whereas the expression of LINC01121, PTTG3P, and HOTAIR declined. Knockdown of lncRNA H19 resulted in a reduction of the cell invasion, with the cells becoming more sensitive to pterostilbene therapy.Conclusions: These results suggest that efficient optimum disruption of lncRNA expression might possibly improve the anti-tumor effects of phytochemical agents, thus serving as a potential therapy for breast cancer
    corecore