125 research outputs found

    Gentamicin-loaded microspheres for treatment of experimental Brucella abortus infection in mice

    Get PDF
    Objectives: To evaluate the efficacy of gentamicin-loaded poly (lactide-co-glycolide) 50:50H (PLGA 50:50H) microspheres for the treatment of mice experimentally infected with Brucella abortus 2308. Methods: The microspheres were dispersed in either 2% (w/v) poloxamer 188 saline solution, or deionized water with the help of a cell homogenizer to break up particle aggregates, and were administered intravenously or intraperitoneally to B. abortus-infected mice 7 days post-infection. Results: Neither a single intravenous or intraperitoneal dose of 67 μg of gentamicin per mouse, nor three intraperitoneal doses of 100 μg of gentamicin per mouse, reduced the Brucella infection in the spleen compared with untreated mice 1 and 3 weeks post-treatment. Histological examination revealed granulation and tissue reaction in the periphery of spleen and liver of animals given three doses of the gentamicin-loaded microspheres. Conclusions: The lack of therapeutic activity of the gentamicin-loaded microspheres might be related to inappropriate microsphere size and aggregation, resulting also in a poor distribution of the microspheres in the spleen. The results might provide an example of practical problems related to particle size and aggregation for in vivo therapy with PLGA microsphere

    Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes

    Get PDF
    Objectives: The intracellular antibiotic efficiency of gentamicin-loaded microspheres in the context of Brucella-infected murine monocytes was examined in vitro with a view to developing improved therapies for the treatment of brucellosis. Methods: Biodegradable microspheres made of end-group capped and uncapped poly(lactide-co-glycolide) 50:50 (PLGA 50:50 and PLGA 50:50H) and containing gentamicin sulphate were used to target Brucella abortus-infected J774 monocyte-macrophages. The infected cells were treated with 15 µg of free or microencapsulated gentamicin and the efficacy of the treatments was measured after 24 h. Results: The particle sizes were below 8 µm and in vitro release of gentamicin from the microspheres followed a continuous (PLGA 50:50H) or a multiphasic (PLGA 50:50) pattern over 50 days. Treatment with gentamicin microencapsulated into the end-group uncapped PLGA 50:50H microspheres, decreased significantly the number of intracellular bacteria (typically by 2 log10) in comparison with untreated infected cells. Addition of 2% poloxamer 188 to the microsphere dispersion medium further reduced the infection (3.5 log10). Opsonization of the particles with non-immune mouse serum had no effect on the antibacterial efficacy of the microspheres. End-group capped PLGA 50:50 type microspheres containing the antibiotic were less effective at reducing intracellular bacteria (∼1 log10 reduction), although addition of poloxamer 188 to the dispersion medium again enhanced their intracellular antibacterial activity. Placebo PLGA 50:50 and PLGA 50:50H microspheres had no bactericidal activity. Conclusions: The results indicate that PLGA 50:50-microencapsulated gentamicin sulphate may be suitable for efficient drug targeting and delivery to reduce intracellular Brucella infection

    Oral delivery of camptothecin using cyclodextrin/poly(anhydride) nanoparticles

    Get PDF
    Camptothecin (CPT), a molecule that shows powerful anticancer activity, is still not used in clinic due to its high hydrophobicity and poor active form's stability. In order to solve these drawbacks, the combination between poly(anhydride) nanoparticles and cyclodextrins was evaluated. CPT-loaded nanoparticles, prepared in the presence of 2-hydroxypropyl-β-cyclodextrin, (HPCD-NP) displayed a mean size close to 170nm and a payload of 50μg per mg (25 times higher than the one of the control nanoparticles). CPT was not released from nanoparticles under gastric conditions. However, under intestinal conditions, about 50% of the drug content was released as a burst, whereas the remained drug was released following a zero-order kinetic. Pharmacokinetic studies revealed that the CPT plasma levels, from orally administered nanoparticles, were high and sustained up to 48h. The CPT oral bioavailability was 7-fold higher than the value obtained with the control, whereas its clearance was significantly lower than for the aqueous suspension. These observations may be directly related to a prolonged residence time of nanoparticles in close contact with the intestinal epithelium, the presence of the cyclodextrin that decreases the CPT transformation into its inactive form and the generation of an acidic microenvironment during the degradation of the poly(anhydride) that would prevent the transformation of the active lactone into the inactive carboxylate conformation

    Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone.

    Get PDF
    The aim was to study the ability of bioadhesive cyclodextrin-poly(anhydride) nanoparticles as carriers for the oral delivery of atovaquone (ATO). In order to increase the loading capacity of ATO by poly(anhydride) nanoparticles, the following oligosaccharides were assayed: 2-hydroxypropyl-β-cyclodextrin (HPCD), 2,6-di-O-methyl-β-cyclodextrin (DCMD), randomly methylated-β-cyclodextrin (RMCD) and sulfobuthyl ether-β-cyclodextrin (SBECD). Nanoparticles were obtained by desolvation after the incubation between the poly(anhydride) with the ATO-cyclodextrin complexes. For the pharmacokinetic studies, ATO formulations were administered orally in rats. Overall, ATO displayed a higher affinity for methylated cyclodextrins than for the other derivatives. However, for in vivo studies, both ATO-DMCD-NP and ATO-HPCD-NP were chosen. These nanoparticle formulations showed more adequate physicochemical properties in terms of size (75%). In vivo, nanoparticle formulations induced higher and more prolonged plasmatic levels of atovaquone than control suspensions of the drug in methylcellulose. Relative bioavailability of ATO when loaded in nanoparticles ranged from 52% (for ATO-HPCD NP) to 71% (for ATO-DMCD NP), whereas for the suspension control formulation the bioavailability was only about 30%. The encapsulation of atovaquone in cyclodextrins-poly(anhydride) nanoparticles seems to be an interesting strategy to improve the oral bioavailability of this lipophilic drug

    Oral immunogenicity in mice and sows of enterotoxigenic escherichia coli outer-membrane vesicles incorporated into zein-based nanoparticles

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in neonatal and recently weaned pigs. The immune protection of the piglets derives from maternal colostrum, since this species does not receive maternal antibodies through the placenta. In the present study, outer membrane vesicles (OMVs) obtained from main ETEC strains involved in piglet infection (F4 and F18 serotypes), encapsulated into zein nanoparticles coated with Gantrez®® AN-mannosamine conjugate, were used to orally immunize mice and pregnant sows. Loaded nanoparticles were homogeneous and spherical in a shape, with a size of 220–280 nm. The diffusion of nanoparticles through porcine intestinal mucus barrier was assessed by a Multiple Particle Tracking technique, showing that these particles were able to diffuse efficiently (1.3% diffusion coefficient), validating their oral use. BALB/c mice were either orally immunized with free OMVs or encapsulated into nanoparticles (100 µg OMVs/mouse). Results indicated that a single dose of loaded nanoparticles was able to elicit higher levels of serum specific IgG1, IgG2a and IgA, as well as intestinal IgA, with respect to the free antigens. In addition, nanoparticles induced an increase in levels of IL-2, IL-4 and IFN-γ with respect to the administration of free OMVs. Orally immunized pregnant sows with the same formulation elicited colostrum-, serum- (IgG, IgA or IgM) and fecal- (IgA) specific antibodies and, what is most relevant, offspring suckling piglets presented specific IgG in serum. Further studies are needed to determine the infection protective capacity of this new oral subunit vaccin

    Bioadhesive properties of Gantrez nanoparticles

    Get PDF
    Bioadhesive nanoparticles have been proposed as carriers for the oral delivery of poorly available drugs and facilitate the use of this route. This work summarises some experiments describing the bioadhesive potential of Gantrez nanoparticles fluorescently labeled with rhodamine B isothiocyanate. The adhesive potential of Gantrez was found to be stronger when folded as nanoparticles than in the solubilised form. Conventional nanoparticles displayed a tropism for the upper areas of the gastrointestinal tract, with a maximum of adhesion 30 min post-administration and a decrease in the adhered fraction along the time depending on the given dose. The cross-linkage of nanoparticles with increasing amounts of 1,3-diaminopropane stabilised the resulting carriers and prolonged their half-life in an aqueous environment; although, the adhesive capacity of nanoparticles, the intensity and the relative duration of the adhesive interactions within the gut as a function of the cross-linking degree. Finally, nanoparticles were coated with either gelatin or albumin. In the first case, the presence of gelatin dramatically decreased the initial capacity of these carriers to interact with the gut mucosa and the intensity of these phenomenons. In the latter, bovine serum albumin coated nanoparticles (BSA-NP) showed an important tropism for the stomach mucosa without further significant distribution to other parts of the gut mucosa

    Synthesis of electroneutralized amphiphilic copolymers with peptide dendrons for intramuscular gene delivery

    Get PDF
    Intramuscular gene delivery materials are of great importance in plasmid-based gene therapy system, but there is limited information so far on how to design and synthesize them. A previous study showed that the peptide dendron-based triblock copolymer with its components arranged in a reversed biomembrane architecture could significantly increase intramuscular gene delivery and expression. Herein, we wonder whether copolymers with biomembrane-mimicking arrangement may have similar function on intramuscular gene delivery. Meanwhile, it is of great significance to uncover the influence of electric charge and molecular structure on the function of the copolymers. To address the issues, amphiphilic triblock copolymers arranged in hydrophilic-hydrophobic-hydrophilic structure were constructed despite the paradoxical characteristics and difficulties in synthesizing such hydrophilic but electroneutral molecules. The as-prepared two copolymers, dendronG2(l-lysine-OH)-poly propylene glycol2k(PPG2k)-dendronG2(l-lysine-OH) (rL2PL2) and dendronG3(l-lysine-OH)-PPG2k-dendronG3(l-lysine-OH) (rL3PL3), were in similar structure but had different hydrophilic components and surface charges, thus leading to different capabilities in gene delivery and expression in skeletal muscle. rL2PL2 was more efficient than Pluronic L64 and rL3PL3 when mediating luciferase, β-galactosidase, and fluorescent protein expressions. Furthermore, rL2PL2-mediated growth-hormone-releasing hormone expression could significantly induce mouse body weight increase in the first 21 days after injection. In addition, both rL2PL2 and rL3PL3 showed good in vivo biosafety in local and systemic administration. Altogether, rL2PL2-mediated gene expression in skeletal muscle exhibited applicable potential for gene therapy. The study revealed that the molecular structure and electric charge were critical factors governing the function of the copolymers for intramuscular gene delivery. It can be concluded that, combined with the previous study, both structural arrangements either reverse or similar to the biomembrane are effective in designing such copolymers. It also provides an innovative way in designing and synthesizing new electroneutralized triblock copolymers, which could be used safely and efficiently for intramuscular gene delivery

    Nuevas formas farmacéuticas para el tratamiento de enfermedades alérgicas

    Get PDF
    Specific immunotherapy involves certain drawbacks which could be minimized by the use of appropriate adjuvants, capable of amplifying the right immune response with minimal side effects. In this context, we review different types of immunotherapy vehicles and coadyuvants. We describe previous studies by our group in which we demonstrated the adjuvant capacity of Gantrez® AN nanoparticles, which can effectively enhance the immune response. We employed two types of nanoparticles (with and without LPS of Brucella ovis as immunomodulator) within capsulated ovoalbumin and Lollium perenne extract, tested on a model of mice sensitized to this allergenic mixture. In the challenge experiment involving the sensitized mice, differences in the mortality rate and in the MCP-1 levels were found between the treated groups and the control. Under the experimental conditions of this model of mice pre-sensitized to L. perenne, Gantrez®AN nanoparticles appeared to be a good strategy for immunotherapy. We finally tested these carriers administered by the oral route and found that they were able to protect a model of mice sensitized to ovalbumin from anaphylactic shock

    Mannosylated nanoparticles for oral immunotherapy in a murine model of peanut allergy

    Get PDF
    Peanut allergy is one of the most prevalent and severe of food allergies with no available cure. The aim of this work was to evaluate the potential of an oral immunotherapy based on the use of a roasted peanut extract (PE) encapsulated in nanoparticles with immunoadjuvant properties. For this, a polymer conjugate formed by the covalent binding of mannosamine to the copolymer of methylvinyl ether and maleic anhydride was firstly synthetized and characterized. Then, the conjugate was used to prepare nanoparticles with an important capability to diffuse through the mucus layer and reach, in a large extent, the intestinal epithelium, including Peyer’s patches. Their immunotherapeutic potential was evaluated in a model of pre-sensitized CD1 mice to peanut. After completing therapy, mice underwent an intraperitoneal challenge with PE. Nanoparticle-treatment was associated with both less serious anaphylaxis symptoms and higher survival rates than control, confirming the protective effect of this formulation against the challenge
    • …
    corecore