93 research outputs found

    Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12

    Get PDF
    Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8(ÎČ)(+) T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8(+) T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress

    Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity.

    Get PDF
    Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions

    Absence of MHC-II expression by lymph node stromal cells results in autoimmunity.

    Get PDF
    How lymph node stromal cells (LNSCs) shape peripheral T-cell responses remains unclear. We have previously demonstrated that murine LNSCs, lymphatic endothelial cells (LECs), blood endothelial cells (BECs), and fibroblastic reticular cells (FRCs) use the IFN-Îł-inducible promoter IV (pIV) of the MHC class II (MHCII) transactivator CIITA to express MHCII. Here, we show that aging mice (>1 yr old) in which MHCII is abrogated in LNSCs by the selective deletion of pIV exhibit a significant T-cell dysregulation in LNs, including defective Treg and increased effector CD4 <sup>+</sup> and CD8 <sup>+</sup> T-cell frequencies, resulting in enhanced peripheral organ T-cell infiltration and autoantibody production. The proliferation of LN-Tregs interacting with LECs increases following MHCII up-regulation by LECs upon aging or after exposure to IFN-Îł, this effect being abolished in mice in which LECs lack MHCII. Overall, our work underpins the importance of LNSCs, particularly LECs, in supporting Tregs and T-cell tolerance

    Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates

    Get PDF
    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector

    Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation

    Get PDF
    BACKGROUND: Interleukin-8 (IL-8, CXCL8) is readily produced by human malignant cells. Dendritic cells (DC) both produce IL-8 and express the IL-8 functional receptors CXCR1 and CXCR2. Most human colon carcinomas produce IL-8. IL-8 importance in malignancies has been ascribed to angiogenesis promotion. PRINCIPAL FINDINGS: IL-8 effects on human monocyte-derived DC biology were explored upon DC exposure to recombinant IL-8 and with the help of an IL-8 neutralizing mAb. In vivo experiments were performed in immunodeficient mice xenografted with IL-8-producing human colon carcinomas and comparatively with cell lines that do not produce IL-8. Allogenic T lymphocyte stimulation by DC was explored under the influence of IL-8. DC and neutrophil chemotaxis were measured by transwell-migration assays. Sera from tumor-xenografted mice contained increasing concentrations of IL-8 as the tumors progress. IL-8 production by carcinoma cells can be modulated by low doses of cyclophosphamide at the transcription level. If human DC are injected into HT29 or CaCo2 xenografted tumors, DC are retained intratumorally in an IL-8-dependent fashion. However, IL-8 did not modify the ability of DC to stimulate T cells. Interestingly, pre-exposure of DC to IL-8 desensitizes such cells for IL-8-mediated in vitro or in vivo chemoattraction. Thereby DC become disoriented to subsequently follow IL-8 chemotactic gradients towards malignant or inflamed tissue. CONCLUSIONS: IL-8 as produced by carcinoma cells changes DC migration cues, without directly interfering with DC-mediated T-cell stimulation

    Shaping of Peripheral T Cell Responses by Lymphatic Endothelial Cells

    No full text
    Lymph node stromal cells (LNSCs) have newly been promoted to the rank of new modulators of T cell responses. The different non-hematopoietic cell subsets in lymph node (LN) were considered for years as a simple scaffold, forming routes and proper environment for antigen (Ag)-lymphocyte encountering. Deeper characterization of those cells has recently clearly shown their impact on both dendritic cell and T cell functions. In particular, lymphatic endothelial cells (LECs) control lymphocyte trafficking and homeostasis in LNs and limit adaptive immune responses. Therefore, the new role of LECs in shaping immune responses has drawn the attention of immunologists. Striking is the discovery that LECs, among other LNSCs, ectopically express a large range of peripheral tissue-restricted Ags (PTAs), and further present PTA-derived peptides through major histocompatibility class I molecules to induce self-reactive CD8(+) T cell deletional tolerance. In addition, both steady-state and tumor-associated LECs were described to be capable of exogenous Ag cross-presentation. Whether LECs can similarly impact CD4(+) T cell responses through major histocompatibility class II restricted Ag presentation is still a matter of debate. Here, we review and discuss our current knowledge on the contribution of Ag-presenting LECs as regulators of peripheral T cell responses in different immunological contexts, including autoimmunity and cancer
    • 

    corecore