12 research outputs found

    Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature

    Full text link
    [EN] This paper explores the gas sensing properties of graphene nanolayers decorated with lead halide perovskite (CH3NH3PbBr3) nanocrystals to detect toxic gases such as ammonia (NH3) and nitrogen dioxide (NO2). A chemical-sensitive semiconductor film based on graphene has been achieved, being decorated with CH3NH3PbBr3 perovskite (MAPbBr3) nanocrystals (NCs) synthesized, and characterized by several techniques, such as field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Reversible responses were obtained towards NO2 and NH3 at room temperature, demonstrating an enhanced sensitivity when the graphene is decorated by MAPbBr3 NCs. Furthermore, the effect of ambient moisture was extensively studied, showing that the use of perovskite NCs in gas sensors can become a promising alternative to other gas sensitive materials, due to the protective character of graphene, resulting from its high hydrophobicity. Besides, a gas sensing mechanism is proposed to understand the effects of MAPbBr3 sensing propertiesThis work was funded in part by MINECO, MICINN and FEDER via grants no. RTI2018-101580-B-I00, by AGAUR under grant. 2017SGR 418 J.C.C gratefully acknowledges a doctoral fellowship from URV under the Marti i Franques fellowship program. E.L. is supported by the Catalan institution for Research and Advanced Studies via the 2012 and 2018 Editions of the ICREA Academia Award. P.A. acknowledges the financial support from the Spanish Government through 'Severo Ochoa"(SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER, UE), and R.G.A. acknowledges FPI scholarship the Spanish Government-MINECO for a (TEC2015-74405-JIN), MAT2015-69669-P.Casanova-Cháfer, J.; García-Aboal, R.; Atienzar Corvillo, PE.; Llobet, E. (2019). Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors. 19(20):1-14. https://doi.org/10.3390/s19204563S11419207 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141. doi:10.1016/j.ceramint.2016.06.145Zaidi, N. A., Tahir, M. W., Vellekoop, M. J., & Lang, W. (2017). A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 17(10), 2283. doi:10.3390/s17102283Meng, F.-L., Guo, Z., & Huang, X.-J. (2015). Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 68, 37-47. doi:10.1016/j.trac.2015.02.008Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250-272. doi:10.1016/j.snb.2014.07.074Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. doi:10.1007/s00604-006-0623-9Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950bPrezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., … Ottaviano, L. (2013). Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. The Journal of Physical Chemistry C, 117(20), 10683-10690. doi:10.1021/jp3085759Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5(12), 5426. doi:10.1039/c3nr00747bVarghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183. doi:10.1016/j.snb.2015.04.062Rodner, M., Puglisi, D., Ekeroth, S., Helmersson, U., Shtepliuk, I., Yakimova, R., … Eriksson, J. (2019). Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors, 19(4), 918. doi:10.3390/s19040918Kaniyoor, A., Imran Jafri, R., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382. doi:10.1039/b9nr00015aSeekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., & Wongchoosuk, C. (2014). Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971-2981. doi:10.1016/j.orgel.2014.08.044Kang, M.-A., Ji, S., Kim, S., Park, C.-Y., Myung, S., Song, W., … An, K.-S. (2018). Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Advances, 8(22), 11991-11996. doi:10.1039/c8ra01184bFine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469Sun, D., Luo, Y., Debliquy, M., & Zhang, C. (2018). Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein Journal of Nanotechnology, 9, 2832-2844. doi:10.3762/bjnano.9.264Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 179, 32-45. doi:10.1016/j.snb.2012.11.014Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397kSun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., … Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7(1), 399-407. doi:10.1039/c3ee43161dJuarez-Perez, E. J., Ono, L. K., Maeda, M., Jiang, Y., Hawash, Z., & Qi, Y. (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 6(20), 9604-9612. doi:10.1039/c8ta03501fChen, H., Zhang, M., Bo, R., Barugkin, C., Zheng, J., Ma, Q., … Tricoli, A. (2017). Superior Self‐Powered Room‐Temperature Chemical Sensing with Light‐Activated Inorganic Halides Perovskites. Small, 14(7), 1702571. doi:10.1002/smll.201702571Kakavelakis, G., Gagaoudakis, E., Petridis, K., Petromichelaki, V., Binas, V., Kiriakidis, G., & Kymakis, E. (2017). Solution Processed CH3NH3PbI3–xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 3(1), 135-142. doi:10.1021/acssensors.7b00761Bao, C., Yang, J., Zhu, W., Zhou, X., Gao, H., Li, F., … Zou, Z. (2015). A resistance change effect in perovskite CH3NH3PbI3 films induced by ammonia. Chemical Communications, 51(84), 15426-15429. doi:10.1039/c5cc06060eZhuang, Y., Yuan, W., Qian, L., Chen, S., & Shi, G. (2017). High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 19(20), 12876-12881. doi:10.1039/c7cp01646hStoeckel, M.-A., Gobbi, M., Bonacchi, S., Liscio, F., Ferlauto, L., Orgiu, E., & Samorì, P. (2017). Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 29(38), 1702469. doi:10.1002/adma.201702469Zhu, R., Zhang, Y., Zhong, H., Wang, X., Xiao, H., Chen, Y., & Li, X. (2019). High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 129, 270-276. doi:10.1016/j.jpcs.2019.01.020Acik, M., & Darling, S. B. (2016). Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 4(17), 6185-6235. doi:10.1039/c5ta09911kChristians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 137(4), 1530-1538. doi:10.1021/ja511132aLeguy, A. M. A., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., … Barnes, P. R. F. (2015). Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 27(9), 3397-3407. doi:10.1021/acs.chemmater.5b00660O’Keeffe, P., Catone, D., Paladini, A., Toschi, F., Turchini, S., Avaldi, L., … Di Carlo, A. (2019). Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 19(2), 684-691. doi:10.1021/acs.nanolett.8b03685Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kLee, G. Y., Yang, M. Y., Kim, D., Lim, J., Byun, J., Choi, D. S., … Kim, S. O. (2019). Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 29(30), 1902489. doi:10.1002/adfm.201902489Fu, X., Jiao, S., Dong, N., Lian, G., Zhao, T., Lv, S., … Cui, D. (2018). A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Advances, 8(1), 390-395. doi:10.1039/c7ra11149eGupta, N., Nanda, O., Grover, R., & Saxena, K. (2018). A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 58, 202-206. doi:10.1016/j.orgel.2018.04.015Air Quality Standards https://ec.europa.eu/environment/air/quality/standards.htmCommission Directive 2000/39/EC https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000L0039-20100108&from=ENSchmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., … Pérez-Prieto, J. (2014). Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 136(3), 850-853. doi:10.1021/ja4109209Yang, G., Kim, B.-J., Kim, K., Han, J. W., & Kim, J. (2015). Energy and dose dependence of proton-irradiation damage in graphene. RSC Advances, 5(40), 31861-31865. doi:10.1039/c5ra03551aD’Acunto, G., Ripanti, F., Postorino, P., Betti, M. G., Scardamaglia, M., Bittencourt, C., & Mariani, C. (2018). Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 139, 768-775. doi:10.1016/j.carbon.2018.07.032Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887. doi:10.1016/j.jiec.2013.11.022Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033jRoy, S., Das, T., Ming, Y., Chen, X., Yue, C. Y., & Hu, X. (2014). Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. Journal of Materials Chemistry A, 2(11), 3961. doi:10.1039/c3ta14528jDatsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., … Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. doi:10.1016/j.carbon.2008.02.012Kumar, P. V., Bernardi, M., & Grossman, J. C. (2013). The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7(2), 1638-1645. doi:10.1021/nn305507pLiu, J., Durstock, M., & Dai, L. (2014). Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 7(4), 1297-1306. doi:10.1039/c3ee42963fGeorgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., … Bao, Q. (2015). Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 3(10), 1389-1396. doi:10.1002/adom.201500150Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., … Watanabe, A. (2019). Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9(3), 422. doi:10.3390/nano9030422Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 19(1), 113. doi:10.3390/s19010113Fang, H.-H., Adjokatse, S., Wei, H., Yang, J., Blake, G. R., Huang, J., … Loi, M. A. (2016). Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2(7). doi:10.1126/sciadv.160053

    Low kinetic energy oxygen ion irradiationof vertically aligned carbon nanotubes

    Get PDF
    International audienceVertically aligned multiwalled carbon nanotubes (v-CNTs) were functionalized with oxygen groups using low kinetic energy oxygen ion irradiation. X-ray photoelectron spectroscopy (XPS) analysis indicates that oxygen ion irradiation produces three different types of oxygen functional groups at the CNTs surface: epoxide, carbonyl and carboxyl groups. The relative concentration of these groups depends on the parameters used for oxygen ion irradiation. Scanning electron microscopy (SEM) shows that the macroscopic structure and alignment of v-CNTS are not affected by the ion irradiation and transmission electron microscopy (TEM) proves tip functionalization of v-CNTs. We observed that in comparison to oxygen plasma treatment, oxygen ion irradiation shows higher functionalization efficiency and versatility. Ion irradiation leads to higher amount of oxygen grafting at the v-CNTs surface, besides different functional groups and their relative concentration can be tuned varying the irradiation parameters

    Gas Sensing Properties of Carbon Nanotubes Decorated with Iridium Oxide Nanoparticles

    No full text
    The properties of Iridium oxide (IrO2) decorated Multi-Wall Carbon Nanotubes (IrO2-MWCNTs) are studied for detecting nitrogen dioxide and ammonia vapors. IrO2 nanoparticles were synthetized using a hydrolysis and acid condensation growth mechanism, and subsequently employed for decorating the sidewalls of carbon nanotubes. Decorated MWCNTs films were deposited onto SiO2/Si substrates for achieving chemoresistive gas sensors. NO2 and NH3 gases were detected under different experimental conditions. Higher and more stable responses towards NH3 and NO2 were observed for iridium-oxide nanoparticle decorated MWCNT material, compared to bare MWCNT material. Raman Spectroscopy was employed to study the nanomaterials and the optimal operating temperatures were determined

    Gas sensor

    No full text
    [ES] La presente invención se refiere a un sensor de gases que comprende un material híbrido de perovskita y grafeno, al procedimiento de obtención de dicho sensor y al método de detección de gases utilizando dicho sensor.[EN] The present invention relates to a gas sensor comprising a hybrid material of perovskite and graphene, to the process for obtaining said sensor and to the method of detecting gases using said sensor.NoUniversitat Rovira i Virgili, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC)A1 Solicitud de patente con informe sobre el estado de la técnic

    Détecteur de gaz

    No full text
    [ES] La presente invención se refiere a un sensor de gases que comprende un material híbrido de perovskita y grafeno, al procedimiento de obtención de dicho sensor y al método de detección de gases utilizando dicho sensor.[EN] The present invention relates to a gas sensor comprising a hybrid material of perovskite and graphene, to the process for obtaining such a sensor, and to the method for detecting gases using such a sensor.[FR] La présente invention concerne un détecteur de gaz qui comprend un matériau hybride de pérovskite et de graphène, le procédé d'obtention dudit détecteur et la méthode de détection de gaz faisant appel audit détecteur.NoUniversitat Rovira i Virgili, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC)A1 Solicitud de patente con informe sobre el estado de la técnic

    Gas sensor

    No full text
    [ES] La presente invención se refiere a un sensor de gases que comprende un material híbrido de perovskita y grafeno, al procedimiento de obtención de dicho sensor y al método de detección de gases utilizando dicho sensor.[EN] The present invention relates to a gas sensor comprising a hybrid material of perovskite and graphene, to the process for obtaining said sensor and to the method of detecting gases using said sensor.NoUniversitat Rovira i Virgili, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas (CSIC)B2 Patente con examen previ

    The role of anions and cations in the gas sensing mechanisms of graphene decorated with lead halide perovskite nanocrystals

    No full text
    We report the effects of both anions and cations in lead halide perovskite-graphene hybrids applied to gas sensing. Ultra-fast sensors that can work at room temperature are developed and studied to elucidate the role in the gas sensing mechanisms of different ions in perovskite nanocrystals.This work was supported in part by MICINN and FEDER (grant no. RTI2018-101580-B-I00) and by AGAUR under grant. 2017SGR418. J. C. C. gratefully acknowledges the postdoctoral fellowship from URV. R. G. A. acknowledges the FPI scholarship from MINECO TEC2015-74405-JIN and MAT2015-69669-P. P. A. acknowledges the financial support from the Spanish Government through ‘Severo Ochoa” (SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER). E. L. was supported by the Catalan institution for Research and Advanced Studies via the 2018 Edition of the ICREA Academia Award

    Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes

    No full text
    The properties of multi-wall carbon nanotubes decorated with iridium oxide nanoparticles (IrOx-MWCNTs) are studied to detect harmful gases such as nitrogen dioxide and ammonia. IrOx nanoparticles were synthetized using a two-step method, based on a hydrolysis and acid condensation growth mechanism. The metal oxide nanoparticles obtained were employed for decorating the sidewalls of carbon nanotubes. Iridium-oxide nanoparticle decorated carbon nanotube material showed higher and more stable responses towards NH3 and NO2 than bare carbon nanotubes under different experimental conditions, establishing the optimal operating temperatures and estimating the limits of detection and quantification. Furthermore, the nanomaterials employed were studied using different morphological and compositional characterization techniques and a gas sensing mechanism is proposed

    Perovskite@graphene nanohybrids for breath analysis: A proof-of-concept

    No full text
    Nanohybrids comprising graphene loaded with perovskite nanocrystals have been demonstrated as a potential option for sensing applications. Specifically, their combination presents an interesting synergistic effect owing to greater sensitivity when bare graphene is decorated with perovskites. In addition, since the main drawback of perovskites is their instability towards ambient moisture, the hydrophobic properties of graphene can protect them, enabling their use for ambient monitoring, as previously reported. However not limited to this, the present work provides a proof-of-concept to likewise employ them in a potential application as breath analysis for the detection of health-related biomarkers. There is a growing demand for sensitive, non-invasive, miniaturized, and inexpensive devices able to detect specific gas molecules in human breath. Sensors gathering these requirements may be employed as a screening tool for reliable and fast detection of potential health issues. Moreover, perovskite@graphene nanohybrids present additional properties highly desirable as the capability to be operated at room temperature (i.e., reduced power consumption), reversible interaction with gases (i.e., reusability), and long-term stability. Within this perspective, the combination of both nanomaterials, perovskite nanocrystals and graphene, possibly includes the main requirements needed, being a promising option to be employed in the next generation of sensing devices.This research was supported in part by MICINN and FEDER via grants no. RTI2018-101580-B-I00, by AGAUR under grant 2017SGR418 and by Belgian Fund for Scientific Research under FRFC contract J001019. J.C.C. gratefully acknowledges a postdoctoral fellowship from URV. R.G.A. acknowledges an FPI scholarship from MINECO TEC2015-74405-JIN and MAT2015-69669-P. P.A. acknowledges the financial support from the Spanish Government through “Severo Ochoa” (SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER). E.L. is supported by the Catalan institution for Research and Advanced Studies via the 2018 Edition of the ICREA Academia Award. C.B. is a research associate at the National Funds for Scientific Research (FRS-FNRS, Belgium)

    Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing

    No full text
    This paper reports for the first time a gas-sensitive nanohybrid based on octahedral molybdenum iodide clusters supported on graphene flakes (Mo6@Graphene). The possibility of integrating this material into two different transducing schemes for gas sensing is proposed since the nanomaterial changes both its electrical resistivity and optical properties when exposed to gases and at room temperature. Particularly, when implemented in a chemoresistive device, the Mo6@Graphene hybrid showed an outstanding sensing performance toward NO2, revealing a limit of quantification of about 10 ppb and excellent response repeatability (0.9% of relative error). While the Mo6@Graphene chemoresistor was almost insensitive to NH3, the use of an optical transduction scheme (changes in photoluminescence) provided an outstanding detection of NH3 even for a low loading of Mo6. Nevertheless, the photoluminescence was not affected by the presence of NO2. In addition, the hybrid material revealed high stability of its gas sensing properties over time and under ambient moisture. Computational chemistry calculations were performed to better understand these results, and plausible sensing mechanisms were presented accordingly. These results pave the way to develop a new generation of multi-parameter sensors in which electronic and optical interrogation techniques can be implemented simultaneously, advancing toward the realization of highly selective and orthogonal gas sensing.J.C.-C. gratefully thanks ICREA Academia (project: 2018 ICREA Academia-01-AJUT). This research was funded from project PID2021-123163OB-I00 funded by MCIN/AEI/10.13039/501100011033/ and FEDER A way of making Europe, and Generalitat Valenciana (grant number AICO/2020/149). This work was partially funded by MICINN and FEDER via grant no. RTI2018-101580-B-I00. E. L. was supported by the Catalan Institution for Research and Advanced Studies via the 2018 Edition of the ICREA Academia Award
    corecore