19 research outputs found

    Identification of Novel Seroreactive Antigens in Johne’s Disease Cattle by Using the Mycobacterium tuberculosis Protein Array

    Get PDF
    Johne’s disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. aviumsubsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing 75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis- infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having 70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne’s disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne’s disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne’s disease diagnostic assays

    The taxonomic name resolution service : an online tool for automated standardization of plant names

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Bioinformatics 14 (2013): 16, doi:10.1186/1471-2105-14-16.The digitization of biodiversity data is leading to the widespread application of taxon names that are superfluous, ambiguous or incorrect, resulting in mismatched records and inflated species numbers. The ultimate consequences of misspelled names and bad taxonomy are erroneous scientific conclusions and faulty policy decisions. The lack of tools for correcting this ‘names problem’ has become a fundamental obstacle to integrating disparate data sources and advancing the progress of biodiversity science. The TNRS, or Taxonomic Name Resolution Service, is an online application for automated and user-supervised standardization of plant scientific names. The TNRS builds upon and extends existing open-source applications for name parsing and fuzzy matching. Names are standardized against multiple reference taxonomies, including the Missouri Botanical Garden's Tropicos database. Capable of processing thousands of names in a single operation, the TNRS parses and corrects misspelled names and authorities, standardizes variant spellings, and converts nomenclatural synonyms to accepted names. Family names can be included to increase match accuracy and resolve many types of homonyms. Partial matching of higher taxa combined with extraction of annotations, accession numbers and morphospecies allows the TNRS to standardize taxonomy across a broad range of active and legacy datasets. We show how the TNRS can resolve many forms of taxonomic semantic heterogeneity, correct spelling errors and eliminate spurious names. As a result, the TNRS can aid the integration of disparate biological datasets. Although the TNRS was developed to aid in standardizing plant names, its underlying algorithms and design can be extended to all organisms and nomenclatural codes. The TNRS is accessible via a web interface at http://tnrs.iplantcollaborative.org/ webcite and as a RESTful web service and application programming interface. Source code is available at https://github.com/iPlantCollaborativeOpenSource/TNRS/ webcite.BJE was supported by NSF grant DBI 0850373 and TR by CSIRO Marine and Atmospheric Research, Australia,. BB and BJE acknowledge early financial support from Conservation International and TEAM who funded the development of early prototypes of taxonomic name resolution. The iPlant Collaborative (http://www.iplantcollaborative.org) is funded by a grant from the National Science Foundation (#DBI-0735191)

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    Get PDF
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P <5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) <P <5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis

    Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition

    No full text
    Vector-borne pathogens are known to alter the phenotypes of their primary hosts and vectors, with implications for disease transmission as well as ecology. Here we show that a plant virus, barley yellow dwarf virus, increases the surface temperature of infected host plants (by an average of 2 °C), while also significantly enhancing the thermal tolerance of its aphid vector Rhopalosiphum padi (by 8 °C). This enhanced thermal tolerance, which was associated with differential upregulation of three heat-shock protein genes, allowed aphids to occupy higher and warmer regions of infected host plants when displaced from cooler regions by competition with a larger aphid species, R. maidis. Infection thereby led to an expansion of the fundamental niche of the vector. These findings show that virus effects on the thermal biology of hosts and vectors can influence their interactions with one another and with other, non-vector organisms.ISSN:2041-172

    Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing.

    No full text
    Escherichia coli strains are classified based on O-antigens that are components of the lipopolysaccharide (LPS) in the cell envelope. O-antigens are important virulence factors, targets of both the innate and adaptive immune system, and play a role in host-pathogen interactions. Because they are highly immunogenic and display antigenic specificity unique for each strain, O-antigens are the biomarkers for designating O-types. Immunologically, 185 O-serogroups and 11 OX-groups exist for classification. Conventional serotyping for O-typing entails agglutination reactions between the O-antigen and antisera generated against each O-group. The procedure is labor intensive, not always accurate, and exhibits equivocal results. In this report, we present the sequences of 71 O-antigen gene clusters (O-AGC) and a comparison of all 196 O- and OX-groups. Many of the designated O-types, applied for classification over several decades, exhibited similar nucleotide sequences of the O-AGCs and cross-reacted serologically. Some O-AGCs carried insertion sequences and others had only a few nucleotide differences between them. Thus, based on these findings, it is proposed that several of the E. coli O-groups may be merged. Knowledge of the O-AGC sequences facilitates the development of molecular diagnostic platforms that are rapid, accurate, and reliable that can replace conventional serotyping. Additionally, with the scientific knowledge presented, new frontiers in the discovery of biomarkers, understanding the roles of O-antigens in the innate and adaptive immune system and pathogenesis, the development of glycoconjugate vaccines, and other investigations, can be explored

    O153 <i>wzx</i> and <i>wzy</i> genes amplified by PCR using primers from sequences presented in this investigation.

    No full text
    <p>Lanes 1, 7, 13: Molecular weight markers. Lane 2: Positive control for O153 targeting <i>wzx</i> gene, Lane 3: Negative control, Lanes 4,5,6: <i>wzx</i> amplified for three clinical isolates. Lane 9: Positive control for O153 targeting <i>wzy</i> gene. Lane 10: Negative control, Lane 11,12,13: <i>wzy</i> amplified for three clinical isolates.</p
    corecore