21 research outputs found

    Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy

    Get PDF
    The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG

    The State and Development Direction of the Geodetic VLBI Station in Korea

    Get PDF
    A permanent geodetic VLBI station with a 22-m diameter antenna will be newly constructed in Korea by the National Geographic Information Institute (NGII) under the project Korea VLBI system for Geodesy (KVG) that aims at maintaining the Korean geodetic datum accurately on the International Terrestrial Reference Frame (ITRF). KVG can receive 2, 8, 22, and 43 GHz bands simultaneously in order to conduct geodetic and astronomical VLBI observations with Korea astronomical VLBI stations along with geodetic observations with IVS stations. This simultaneous four-band receiving capability is a unique feature of the KVG system. The KVG has started officially in October 2008. A new geodetic VLBI station will be constructed at Sejong city (about 120 km south of Seoul and about 20 km north-northwest of Daejeon) and construction of all systems will be completed in 2011

    Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling

    Get PDF
    Background: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. Methods: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 μg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1β, and TNF-α levels were analyzed by ELISA. Results: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. Conclusions: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain. © 2019 The Author(s).1

    Regorafenib Regulates AD Pathology, Neuroinflammation, and Dendritic Spinogenesis in Cells and a Mouse Model of AD

    Get PDF
    The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer's disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aβ plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3β) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo.1

    Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

    Get PDF
    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated.This work was supported by grants from the National Basic Research Program (2013CB530602 and 2011CB910801 to P.L.), from the National Natural Science Foundation of China (31430040, 31321003 and 31030038), from the China Postdoctoral Science Foundation (2012M520249 and 2013T60103 to L.Z.) and from the Wellcome Trust (091551 to D.S.). This work was also supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2013M3A9D5072563 to C.C.) and Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Korea (A102060 to C.C.).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150107/ncomms6949/full/ncomms6949.html?WT.ec_id=NCOMMS-20150114

    Configuring Value with Service-Dominant Logic: the Case of Marine Informatics Technology

    No full text
    The purpose of this paper is to provide a theoretical framework for Maritime Informatics from a service-oriented ecosystem view. We propose to go beyond the traditional service provider-user dyad view to provide a richer understanding of Maritime Informatics using a case study. Relying upon the Service-Dominant (S-D) logic framework, this paper presents how this service-oriented ecosystem view helps multiple stakeholders configure value by integrating dispersed data and information in the context of e-navigation. The S-D dominant logic provides insights to investigate network-oriented, information-oriented, or experience-oriented service ecosystem with Maritime Informatics. We apply the Service-Dominant logic to analyze a case study of Korean initiatives on e-navigation for enhancing our understanding of Maritime Informatics

    Configuring value with service-dominant logic: The case of Marine Informatics technology

    No full text
    The purpose of this paper is to provide a theoretical framework for Maritime Informatics from a serviceoriented ecosystem view. We propose to go beyond the traditional service provider-user dyad view to provide a richer understanding of Maritime Informatics using a case study. Relying upon the Service-Dominant (S-D) logic framework, this paper presents how this service-oriented ecosystem view helps multiple stakeholders configure value by integrating dispersed data and information in the context of enavigation. The S-D dominant logic provides insights to investigate network-oriented, informationoriented, or experience-oriented service ecosystem with Maritime Informatics. We apply the Service-Dominant logic to analyze a case study of Korean initiatives on e-navigation for enhancing our understanding of Maritime Informatics

    Regorafenib Regulates AD Pathology, Neuroinflammation, and Dendritic Spinogenesis in Cells and a Mouse Model of AD

    No full text
    The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer’s disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aβ plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3β) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo
    corecore