137 research outputs found

    High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots

    Get PDF
    All inorganic CsPbBr3 quantum dots (QDs) are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield (PLQY) and defect tolerance. However, the poor stability and degraded luminescent performance may impede their further commercialization because of the separation of conventional ligands from the QDs surfaces. Recently, Zang replaced the regular oleic acid with 2-hexyl-decanoic acid (DA), which possesses higher binding energy on the QDs surfaces, to act as ligands of QDs, exhibiting PLQY of 96% and excellent stabilities against ethanol and water. WLEDs with DA-modified CsPbBr3 QDs achieved improved thermal stability, a color rendering index of 93, a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K, implying their prominent applications in solid-state lighting and displays

    Single atom catalyst having a two dimensional support material.

    Get PDF
    A method for forming a single atom catalyst on a two-dimensional support material involves providing the two-dimensional support material. The two-dimensional support material is combined with at least two heteroatoms and a metal to form a solution. Liquid is removed from the solution to form a material that includes the two-dimensional support material, the at least two heteroatoms, and the metal. The material including the two-dimensional support material, the at least two heteroatoms, and the metal is heated to form the single atom catalyst that includes single atoms of the metal. The at least two heteroatoms bind the single atoms of the metal to, and stabilize the single atoms of the metal on, the two-dimensional support material

    Solar cell with MXene electrode.

    Get PDF
    A solar cell (100) includes a p-type silicon layer (105) having a first side and a second side and an n-type silicon layer (110) having a first side and a second side. The first side of the n-type silicon layer is arranged on the second side of the p-type silicon layer. The solar cell also includes a first metal electrode (115) arranged on the first side of the p-type silicon layer and a second metal electrode (120) arranged on the second side of the n-type silicon layer. The second metal electrode includes an MXene

    Nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    Get PDF
    A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode

    Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction.

    Get PDF
    Photoelectrochemical water splitting is one of the viable approaches to produce clean hydrogen energy from water. Herein, we report MoS 2 /Si-heterojunction (HJ) photocathode for PEC H 2 production. The MoS 2 /Si-HJ photocathode exhibits exceptional PEC H 2 production performance with a maximum photocurrent density of 36.33 mA/cm 2 , open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h of reaction time. The photocurrent density achieved by MoS 2 /Si-HJ photocathode is significantly higher than most of the MoS 2 coupled Si-based photocathodes reported elsewhere, indicating excellent PEC H 2 production performance

    Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication.

    Get PDF
    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120(o) with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10(-3) over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems

    Nonlinear absorption applications of CH₃NH₃PbBr₃ perovskite crystals

    Get PDF
    Researchers have recently revealed that hybrid lead halide perovskites exhibit ferroelectricity, which is often associated with other physical characteristics, such as a large nonlinear optical response. In this work, we study the non-linear optical properties of single crystal inorganic-organic hybrid perovskite CH3NH3PbBr3. By exciting the material with a 1044 nm laser, we were able to observe strong two-photon absorption-induced photoluminescence in the green spectral region. Using the transmission open-aperture Z-scan technique, we estimated the values of the two-photon absorption coefficient to be 8.5 cm GW-1, which is much higher than that of standard two-photon absorbing materials that are industrially used in nonlinear optical applications, such as LiNbO3, LiTaO3, KTiOPO4, and KH2PO4. Such a strong two-photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as reduce noise, and can be used to strongly control the intensity of incident light. In this study, we demonstrate the superior optical limiting, pulse reshaping, and stabilization properties of CH3NH3PbBr3, opening new applications for perovskites in nonlinear optics

    Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    Get PDF
    Reactively sputtered nickel oxide (NiO_x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O_2(g). These NiO_x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO_x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O_2(g)
    • …
    corecore