6 research outputs found

    Expression of the transcription factor Hes3 in the mouse and human ocular surface, and in pterygium

    Get PDF
    Purpose: In this work we examined the presence of the neural stem cell biomarker Hairy and Enhancer of Split 3 (Hes3) in the anterior eye segment and in the aberrant growth condition of the conjunctiva pterygium. Further, we studied the response of Hes3 to irradiation. Materials and methods: Adult mouse and human corneoscleral junction and conjunctiva, as well as human pterygium were prepared for immunohistochemical detection of Hes3 and other markers. Total body irradiation was used to study the changes in the pattern of Hes3 expression. Results: The adult rodent and human eye as well as pterygium, contain a population of cells expressing Hes3. In the human eye, Hes3-expressing (Hes3+) cells are found predominantly in the subconjunctival space spanning over the limbus where they physically associate with blood vessels. The cytoarchitecture of Hes3 + cells is similar to those previously observed in the adult central nervous system. Furthermore, irradiation reduces the number of Hes3 + cells in the subconjunctival space. In contrast, irradiation strongly promotes the nuclear localization of Hes3 in the ciliary body epithelium. Conclusions: Our results suggest that a recently identified signal transduction pathway that regulates neural stem cells and glioblastoma cancer stem cells also operates in the ocular surface, ciliary body, and in pterygium

    Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity.

    No full text
    In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43, tag1/cntn2, neurod, zebrin II). The Locus coeruleus (LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a, zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore, locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8

    Loss of the Cholesterol-Binding Protein Prominin-1/CD133 Causes Disk Dysmorphogenesis and Photoreceptor Degeneration

    No full text
    Prominin-1/CD133 (Prom-1) is a commonly used marker of neuronal, vascular, hematopoietic and other stem cells, yet little is known about its biological role and importance in vivo. Here, we show that loss of Prom-1 results in progressive degeneration of mature photoreceptors with complete loss of vision. Despite the expression of Prom-1 on endothelial progenitors, photoreceptor degeneration was not attributable to retinal vessel defects, but caused by intrinsic photoreceptor defects in disk formation, outer segment morphogenesis, and associated with visual pigment sorting and phototransduction abnormalities. These findings shed novel insight on how Prom-1 regulates neural retinal development and phototransduction in vertebrates.status: publishe

    The stem cell marker prominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease

    No full text
    Cerebrospinal fluid (CSF) is routinely used for diagnosing and monitoring neurological diseases. The CSF proteins used so far for diagnostic purposes (except for those associated with whole cells) are soluble. Here, we show that human CSF contains specific membrane particles that carry prominin-1/CD133, a neural stem cell marker implicated in brain tumors, notably glioblastoma. Differential and equilibrium centrifugation and detergent solubility analyses showed that these membrane particles were similar in physical properties and microdomain organization to small membrane vesicles previously shown to be released from neural stem cells in the mouse embryo. The levels of membrane particle-associated prominin-1/CD133 declined during childhood and remained constant thereafter, with a remarkably narrow range in healthy adults. Glioblastoma patients showed elevated levels of membrane particle-associated prominin-1/CD133, which decreased dramatically in the final stage of the disease. Hence, analysis of CSF for membrane particles carrying the somatic stem cell marker prominin-1/CD133 offers a novel approach for studying human central nervous system disease
    corecore