87 research outputs found

    Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase

    Full text link
    Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self-organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important bio-colloid system with wide-ranging applications as structural, insulating and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentation proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations, that the chirality is inverted from right-handed at the nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for their application in colloidal systems, liquid crystals and nanomaterials

    Conformation of Circular DNA in 2 Dimensions

    Full text link
    The conformation of circular DNA molecules of various lengths adsorbed in a 2D conformation on a mica surface is studied. The results confirm the conjecture that the critical exponent ν\nu is topologically invariant and equal to the SAW value (in the present case ν=3/4\nu=3/4), and that the topology and dimensionality of the system strongly influences the cross-over between the rigid regime and the self-avoiding regime at a scale L8pL\approx 8 \ell_p. Additionally, the bond correlation function scales with the molecular length LL as predicted. For molecular lengths L5pL\leq5 \ell_p, circular DNA behaves like a stiff molecule with approximately elliptic shape.Comment: 4 pages, 5 figure

    Geometric dilution of precision of the GNSS for Mars (GNSS FATIMA)

    Get PDF
    Positioning on Mars is one of the critical aspects of every planetary mission. Current complex planetary exploration systems (orbital and surface) rely on complex navigation and positioning systems, which make these systems complicated, expensive and their missions dangerous. The project of the global navigation satellite system for Mars (proposed system name – FATIMA) can make this and even future manned missions more safe, less expensive and the whole positioning in real time more reliable. The GNSS can be used by more systems or users simultaneously. In this research paper we focus on possible positioning errors when such a system is used. This research is focused on the GDOP – Geometric Dilution of Precision as one of the main factors influencing the GNSS

    Conformation of Ring Polymers in 2D Constrained Environments

    Get PDF
    The combination of ring closure and spatial constraints has a fundamental effect on the statistics of semiflexible polymers such as DNA. However, studies of the interplay between circularity and constraints are scarce and single-molecule experimental data concerning polymer conformations are missing. By means of atomic force microscopy we probe the conformation of circular DNA molecules in two dimensions and in the concentrated regime (above the overlap concentration c*). Molecules in this regime experience a collapse, and their statistical properties agree very well with those of simulated vesicles under pressure. Some circular molecules also create confining regions in which other molecules are trapped. Thus we show further that spatially confined molecules fold into specific conformations close to those found for linear chains, and strongly dependent on the size of the confining box

    Persistence length and scaling properties of single-stranded DNA adsorbed on modified graphite

    Get PDF
    We have characterized the polymer physics of single-stranded DNA (ssDNA) using atomic force microscopy. The persistence length l(p) of circular ssDNA adsorbed on a modified graphite surface was determined independently of secondary structure. At a very low ionic strength we obtained l(p)=9.1 nm from the bond correlation function. Increasing the salt concentration lead to a decrease in l(p); at 1 mM NaCl we found l(p)=6.7 nm, while at 10 mM NaCl a value l(p)=4.6 nm was obtained. The persistence length was also extracted from the root-mean-square end-to-end distance and the end-to-end distance distribution function. Finally, we have investigated the scaling behavior using the two latter quantities, and found that on long length scales ssDNA behaves as a two-dimensional self-avoiding walk
    corecore