246 research outputs found

    Saint Vincent and Islam

    Get PDF
    Vincent de Paul took a great interest in Islamic countries; indeed, the Congregation’s first foreign mission was to Constantinople in the Ottoman Empire. He was especially concerned with missions to North African countries and continued them despite considerable obstacles. While conversions of Muslims were desirable, they were to be made discreetly, and the confreres’ main priorities were to minister spiritually and corporally to Christian slaves. If Muslims were to be converted, he believed that they would be won over by deeds and love rather than by force or arguments. Yves Danjou explains how Vincent respected Muslims, especially considering the era. He was well-informed about them from different sources and recommended some of their practices and actions as examples to the Congregation and the Daughters of Charity. He also understood Muslim thought about Jesus and Mary. Vincent’s pastoral theology is explained. Danjou also discusses the importance of Islam in Vincent de Paul’s time, France’s relationship with Islamic countries, and French knowledge of Islam

    Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII

    Get PDF
    Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. Summary: Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2-antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2-antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2-antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2-antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction

    C-terminal extensions of ku70 and ku80 differentially influence dna end binding properties

    Get PDF
    The Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Generation and characterization of monoclonal antibodies against the N-terminus of alpha-2-antiplasmin

    Get PDF
    Around 70% of circulating alpha-2-antiplasmin (α2AP), the main natural plasmin inhibitor, is N-terminally cleaved between residues Pro12 and Asn13 by antiplasmin-cleaving enzyme. This converts native Met-α2AP into the more potent fibrinolysis inhibitor Asn-α2AP. The Arg6Trp (R6W) polymorphism affects the N-terminal cleavage rate of Met-α2AP in a purified system, with ~8-fold faster conversion of Met(R6)-α2AP than Met(W6)-α2AP. To date, assays to determine N-terminally intact Met-α2AP in plasma have been limited to an ELISA that only measures Met(R6)-α2AP. The aim of this study was to generate and characterize monoclonal antibodies (mAbs) against Met(R6)-α2AP, Met(W6)-α2AP and all α2AP forms (total-α2AP) in order to develop specific Met(R6)-α2AP and Met(W6)-α2AP ELISAs. Recombinant Met(R6)-α2AP, Met(W6)-α2AP and Asn-α2AP were expressed in Drosophila S2 cells. Using hybridoma technology, a panel of 25 mAbs was generated against a mixture of recombinant Met(R6)-α2AP and Met(W6)-α2AP. All mAbs were evaluated for their specific reactivity using the three recombinant α2APs in one-site non-competitive ELISAs. Three mAbs were selected to develop sandwich-type ELISAs. MA-AP37E2 and MA-AP34C4 were selected for their specific reactivity against Met(R6)-α2AP and Met(W6)-α2AP, respectively, and used for coating. MA-AP15D7 was selected for its reactivity against total-α2AP and used for detection. With the novel ELISAs we determined Met(R6)-α2AP and Met(W6)-α2AP levels in plasma samples and we showed that Met(R6)-α2AP was converted faster into Asn-α2AP than Met(W6)-α2AP in a plasma milieu. In conclusion, we developed two specific ELISAs for Met(R6)-α2AP and Met(W6)-α2AP, respectively, in plasma. This will enable us to determine N-terminal heterogeneity of α2AP in plasma samples

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS

    HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis

    Get PDF
    The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2. BRCA2 is a key homologous recombination mediator in vertebrates. Brandsma et al. show that it directly interacts with a testis-expressed protein, HSF2BP, and that male mice deficient for HSF2BP are infertile due to a meiotic recombination defect. They also find that HSF2BP contributes to DNA repair in mouse embryonic stem cells

    Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA

    Get PDF
    CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications
    corecore