129 research outputs found

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al

    Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes

    Get PDF
    Quantitative differences in gene expression are thought to contribute to phenotypic differences between individuals. We generated genome-wide transcriptional profiles of lymphocyte samples from 1,240 participants in the San Antonio Family Heart Study. The expression levels of 85% of the 19,648 detected autosomal transcripts were significantly heritable. Linkage analysis uncovered 41,000 cis-regulated transcripts at a false discovery rate of 5% and showed that the expression quantitative trait loci with the most significant linkage evidence are often located at the structural locus of a given transcript. To highlight the usefulness of this much-enlarged map of cis-regulated transcripts for the discovery of genes that influence complex traits in humans, as an example we selected high-density lipoprotein cholesterol concentration as a phenotype of clinical importance, and identified the cis-regulated vanin 1 (VNN1) gene as harboring sequence variants that influence high-density lipoprotein cholesterol concentrations. Phenotypic differences among individuals are partly the result of quantitative differences in transcript abundance. Although environmental stimuli may influence the location, timing, and/or level of transcription of specific genes, genetic differences among individuals are also known to have a significant role. Transcript levels may be thought of as quantitative endophenotypes that can be subjected to statistical genetic analyses in an effort to localize and identify the underlying genetic factors, an approach that is sometimes referred to as genetical genomics 1 . Using microarray technology, it is now possible to assess the abundance of many transcripts-and, indeed, of the entire known transcriptome-simultaneously. Studies that attempt to localize the genetic regulators of gene expression have been carried out in several species, including yeast 2-5 , plants (maize and eucalyptus) 6,7 , fly 8 , mouse 6,9,10 and rat 11 . Several recent investigations have also focused on humans. In most of these studies, microarray-based gene expression profiles were generated for transformed cell lines derived from lymphocytes from members of the Centre d'Etude du Polymorphisme Humain (CEPH) families 12 , and linkage and/or linkage disequilibrium approaches were used to map the genetic determinants that regulate the expression of individual transcript

    Inclusion of plasma lipid species improves classification of individuals at risk of type 2 diabetes.

    Get PDF
    A significant proportion of individuals with diabetes or impaired glucose tolerance have fasting plasma glucose less than 6.1 mmol/L and so are not identified with fasting plasma glucose measurements. In this study, we sought to evaluate the utility of plasma lipids to improve on fasting plasma glucose and other standard risk factors for the identification of type 2 diabetes or those at increased risk (impaired glucose tolerance).Our diabetes risk classification model was trained and cross-validated on a cohort 76 individuals with undiagnosed diabetes or impaired glucose tolerance and 170 gender and body mass index matched individuals with normal glucose tolerance, all with fasting plasma glucose less than 6.1 mmol/L. The inclusion of 21 individual plasma lipid species to triglycerides and HbA1c as predictors in the diabetes risk classification model resulted in a statistically significant gain in area under the receiver operator characteristic curve of 0.049 (p<0.001) and a net reclassification improvement of 10.5% (p<0.001). The gain in area under the curve and net reclassification improvement were subsequently validated on a separate cohort of 485 subjects.Plasma lipid species can improve the performance of classification models based on standard lipid and non-lipid risk factors

    Effects of breaking up prolonged sitting on skeletal muscle gene expression

    No full text
    Breaking up prolonged sitting has been beneficially associated with cardiometabolic risk markers in both observational and intervention studies. We aimed to define the acute transcriptional events induced in skeletal muscle by breaks in sedentary time. Overweight/obese adults participated in a randomized three-period, three-treatment crossover trial in an acute setting. The three 5-h interventions were performed in the postprandial state after a standardized test drink and included seated position with no activity and seated with 2-min bouts of light- or moderate-intensity treadmill walking every 20 min. Vastus lateralis biopsies were obtained in eight participants after each treatment, and gene expression was examined using microarrays validated with real-time quantitative PCR. There were 75 differentially expressed genes between the three conditions. Pathway analysis indicated the main biological functions affected were related to small-molecule biochemistry, cellular development, growth and proliferation, and carbohydrate metabolism. Interestingly, differentially expressed genes were also linked to cardiovascular disease. For example, relative to prolonged sitting, activity bouts increased expression of nicotamide N-methyltransferase, which modulates anti-inflammatory and anti-oxidative pathways and triglyceride metabolism. Activity bouts also altered expression of 10 genes involved in carbohydrate metabolism, including increased expression of dynein light chain, which may regulate translocation of the GLUT-4 glucose transporter. In addition, breaking up sedentary time reversed the effects of chronic inactivity on expression of some specific genes. This study provides insight into the muscle regulatory systems and molecular processes underlying the physiological benefits induced by interrupting prolonged sitting

    Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells

    No full text
    SEPS1 (also called selenoprotein S, SelS) plays an important role in the production of inflammatory cytokines and its expression is activated by endoplasmic reticulum (ER) stress. In this report, we have identified two binding sites for the nuclear factor kappa B in the human SEPS1 promoter. SEPS1 gene expression, protein levels and promoter activity were all increased 2-3-fold by TNF-alpha and IL-1beta in HepG2 cells. We have also confirmed that the previously proposed ER stress response element GGATTTCTCCCCCGCCACG in the SEPS1 proximate promoter is fully functional and responsive to ER stress. However, concurrent treatment of HepG2 cells with IL-1beta and ER stress produced no additive effect on SEPS1 gene expression. We conclude that SEPS1 is a new target gene of NF-kappaB. Together with our previous findings that SEPS1 may regulate cytokine production in macrophage cells, we propose a regulatory loop between cytokines and SEPS1 that plays a key role in control of the inflammatory response
    • …
    corecore