49 research outputs found

    Disciplinary Literacy in History Grade 9-12th

    Get PDF
    I will be presenting a poster on reading for my EDTE 417/ EDTE 517 Teaching Reading Content Area/Secondary class. As my content area is social, my emphasis will be on how to engage students more in reading about history and social issues such as poverty and inequality

    Effects of compositional variation on the thermal stability of θ′-Al2Cu precipitates and elevated-temperature strengths in Al-Cu 206 alloys

    Get PDF
    This study explored the effects of compositional variation of Al-Cu 206 alloys (Si and Mn concentrations, 0.12 versus 0.3 wt.% each) on the precipitation and thermal stability of h¢ precipitates, and the associated elevated-temperature strengths during long-term thermal exposure at 300 C. The results indicated that both alloys under the T7 condition exhibited comparable yield strengths at 20 and 300 C, which were predominantly controlled by h¢ precipitates. Upon exposure at 300 C for up to 1000 h, the h¢ precipitates in the alloy with low Si and Mn concentrations remained stable and resistant to transformation into the equilibrium h phase. The coarsening of h¢ proceeded through both lengthening and thickening, resulting in the continuing decline in YS at 300 C from 93 MPa after 300 C/100 h to 78 MPa after 300 C/1000 h. Conversely, the h¢ precipitates in the alloy with high Si and Mn concentrations underwent almost complete transformation into deleterious h after only 100 h at 300 C, thus imparting a significantly lower YS of 69 MPa after 300 C/100 h. The possible sources of these microstructure and property changes with the compositional variation were explored. This study has implications for strategic design of Al-Cu alloys for high-temperature applications

    Improving the mechanical response of Al–Mg–Si 6082 structural alloys during high-temperature exposure through dispersoid strengthening

    Get PDF
    The feasibility and efficacy of improving the mechanical response of Al–Mg–Si 6082 structural alloys during high temperature exposure through the incorporation of a high number of α-dispersoids in the aluminum matrix were investigated. The mechanical response of the alloys was characterized based on the instantaneous high-temperature and residual room-temperature strengths during and after isothermal exposure at various temperatures and durations. When exposed to 200 °C, the yield strength (YS) of the alloys was largely governed by β” precipitates. At 300 °C, β” transformed into coarse β’, thereby leading to the degradation of the instantaneous and residual YSs of the alloys. The strength improvement by the fine and dense dispersoids became evident owing to their complementary strengthening effect. At higher exposure temperatures (350–450 °C), the further improvement of the mechanical response became much more pronounced for the alloy containing fine and dense dispersoids. Its instantaneous YS was improved by 150–180% relative to the base alloy free of dispersoids, and the residual YS was raised by 140% after being exposed to 400–450 °C for 2 h. The results demonstrate that introducing thermally stable dispersoids is a cost-effective and promising approach for improving the mechanical response of aluminum structures during high temperature exposure

    Enhanced elevated-temperature strength and creep resistance of dispersion-strengthened Al-Mg-Si-Mn AA6082 alloys through modified processing route

    Get PDF
    In the present work, we investigated the possibility of introducing fine and densely distributed α-Al(MnFe)Si dispersoids into the microstructure of extruded Al-Mg-Si-Mn AA6082 alloys containing 0.5 and 1 wt % Mn through tailoring the processing route as well as their effects on room- and elevated-temperature strength and creep resistance. The results show that the fine dispersoids formed during low-temperature homogenization experienced less coarsening when subsequently extruded at 350 °C than when subjected to a more typical high-temperature extrusion at 500 °C. After aging, a significant strengthening effect was produced by β″ precipitates in all conditions studied. Fine dispersoids offered complimentary strengthening, further enhancing the room-temperature compressive yield strength by up to 72–77 MPa (≈28%) relative to the alloy with coarse dispersoids. During thermal exposure at 300 °C for 100 h, β″ precipitates transformed into undesirable β-Mg2Si, while thermally stable dispersoids provided the predominant elevated-temperature strengthening effect. Compared to the base case with coarse dispersoids, fine and densely distributed dispersoids with the new processing route more than doubled the yield strength at 300 °C. In addition, finer dispersoids obtained by extrusion at 350 °C improved the yield strength at 300 °C by 17% compared to that at 500 °C. The creep resistance at 300 °C was greatly improved by an order of magnitude from the coarse dispersoid condition to one containing fine and densely distributed dispersoids, highlighting the high efficacy of the new processing route in enhancing the elevated-temperature properties of extruded Al-Mg-Si-Mn alloys

    A new approach to determine tensile stress-strain evolution in semi-solid state at near-solidus temperature of aluminum alloys

    Get PDF
    Accurate determination of the materials’ strength and ductility in the semi-solid state at near-solidus temperatures is essential, but it remains a challenging task. This study aimed to develop a new method to determine the stress-strain evolution in the semi-solid state of aluminum alloys within the Gleeble 3800 unit. Stress evolution was determined by the newly developed “L-gauge” method, which converted the displacement of the “restrained” jaw, measured using an L-gauge, into the force. This method gives the possibility to determine the flow stress more accurately, especially for the very low stress rang (1–10 MPa) in the semi-solid state at near-solidus temperatures. The digital image correlation technique implemented in the Gleeble unit allowed effective measurement of the heterogeneous strain fields evolving within the specimen under tensile loading. Therefore, the stress-strain curves measured in the semi-solid state help to better understand the alloy’s susceptibility to hot tearing. The results of an AA6111 alloy under different liquid fractions (2.8% at 535 °C and 5.8% at 571 °C) were demonstrated. The reliable stress-strain data and heterogenous strain distribution are beneficial to develop the thermomechanical models and hot-tearing criteria

    Post-collisional magmatism associated with the final closure of the Rushan-Pshart Meso-Tethys Ocean in Pamir, Tajikistan: Inference from Cretaceous igneous rocks of the Pshart accretionary complex

    Get PDF
    The Pamir orogen was formed by the subducted accretion and amalgamation of Cimmerian terranes from the northern margin of Gondwana with the southern margin of Eurasia. The Mesozoic magmatic rocks are widespread in Pamir and record the tectonic evolution in different stages. The Rushan–Pshart suture zone represents an ancient ocean between Central and Southern Pamir. This paper reports the petrography, geochronology, and geochemistry of Cretaceous granites and diabase dikes that intrude into the Pshart complex. The granites were emplaced between 124 and 118 Ma, based on their zircon U-Pb ages. These granites are characterized by high-K calc-alkaline, low magnesian, and high SiO2, A/CNK, and K2O+Na2O values. They also display strong depletion of Ba, Sr, Eu, and Ti and comparatively weak negative Nb anomalies in spidergrams. Thus, we proposed in this study that these are highly fractionated, strongly peraluminous S-type granites. They were generated by the partial melting of the metasedimentary rocks in the plagioclase stability field and underwent subsequent fractional crystallization during their ascent. The diabase dikes contain low SiO2, and high MgO levels and negative Nb and Ta anomalies, which were interpreted to form in an extensional environment. Late Jurassic–Early Cretaceous closure of the Rushan–Pshart Ocean and subsequent foundering of its oceanic lithosphere caused local extension and upwelling of the asthenospheric mantle. The underplating of mafic magma provided a heat source to melt the metasedimentary-derived granitic that formed in the initial post-collisional environment. The subsequent local extension caused the emplacement of diabase dikes. Based on our new data and combined with data from previous studies, we concluded that the Rushan–Pshart suture zone is the remnant of the Meso-Tethys Ocean and may represent the western continuation of the Bangong–Nujiang suture of the Tibetan Plateau

    Development and characterization of a new generation of transition elements based secondary Al-Si-Cu-Mg foundry alloys

    Get PDF
    Secondary Al-Si-Cu-Mg based foundry alloys are widely used in automotive industry to particularly produce powertrain cast components mainly due to their good ratio between weight and mechanical properties, and excellent casting characteristics. Presence of impurity elements, such as Fe, Mn, Cr, Ti, V and Zr, in secondary Al-Si alloys is one of the critical issues since these elements tend to reduce alloy mechanical properties. There is an ongoing effort to control the formation of intermetallic phases containing transition metals, during alloy solidification. Although phases formation involving these transition metal impurities in non-grain-refined Al-Si alloys is well documented in the literature, the role of grain refinement in microstructural evolution of secondary Al-Si-Cu-Mg alloys needs further experimental investigations since chemical grain refinement is one of the critical melt treatment operations in foundries. The primary aim of this PhD work is thus defined to characterize the formation of intermetallic phases containing transition metals in secondary Al-7Si-3Cu-0.3Mg alloy before and after grain refinement by different master alloys and contribute to the understanding of the mechanisms underlying the microstructural changes occurring with the addition of grain refiner. Another critical issue related to Al-Si-Cu-Mg alloys is their limited thermal stability at temperatures above 200 oC. The operating temperature in engine combustion chamber is reported to often exceed 200 oC during service. Moreover, a further increase of operating temperature is anticipated due to the expected engine power enhancement in near future, which indicates the necessity for the development of a new creep-resistant Al alloys. Deliberate addition of transition metals is believed to yield a new heat-resistant alloy by promoting the formation of thermally stable dispersoids inside α-Al grains. This study thus also attempted to investigate the effect of adding transition metals Zr, V and Ni on the solidification processing, microstructural evolution and room/high-temperature tensile properties of secondary Al-7Si-3Cu-0.3Mg alloy, one of the most used alloys in automotive engine manufacturing. The influence of transition metal impurities on microstructural evolution of secondary Al-7Si-3Cu-0.3Mg alloy was investigated before and after chemical treatment with different master alloys: Al-10Sr, Al-5Ti-1B, Al-10Ti and Al-5B. The Al-10Zr, Al-10V and Al-25Ni master alloys were used for the experimental investigations of the effects of deliberate additions of transition metals on the solidification path, microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy. Solidification path of the alloys was characterized by the traditional thermal analysis technique and differential scanning calorimetry (DSC). Optical microscope (OM), scanning electron microscope (SEM) equipped with energy-dispersive (EDS), wavelength-dispersive spectrometers (WDS) and electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) equipped with EDS were used to characterize the type, morphology and distribution of the phases precipitated during solidification and heat treatment of the studied alloys. The static tensile properties of the alloys were characterized at room (20 oC) and high temperatures (200 and 300 ºC). Experimental findings indicate that the Sr-modification and grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy with Al-Ti-B can be enough effective despite the presence of transition metal impurities in the material and the variation of pouring temperature. However, the V and Zr (~100 ppm each) available in secondary Al-7Si-3Cu-0.3Mg alloy tended to promote the precipitation of harmful, primary AlSiTi intermetallics during solidification of grain-refined alloy. This implies that more effective optimization of grain refiner addition level in secondary Al foundry alloys can be achieved by considering the role of transition metal impurities, Ti, V and Zr, since the formation of primary AlSiTi particles causes (1) the depletion of Ti needed for effective α-Al grains growth restriction and (2) the formation of casting defects, such as shrinkage, due to their flaky morphology. Iron available in secondary Al-7Si-3Cu-0.3Mg alloy as impurity only formed more desirable α-Al15(FeMn)3Si2 phase in non-grain refined state. After grain refinement by Al-5Ti-1B, Fe was also involved in the formation of more deleterious β-Al5FeSi phase. The TiB2 particles acted as nucleation site for β-Al5FeSi phase. Both higher cooling rate and higher Al-5Ti-1B addition levels tended to promote the formation of deleterious β-Al5FeSi at the expense of α-Al15(FeMn)3Si2 in the alloy refined by Al-5Ti-1B. This implies that rather than the ratio between Mn and Fe, the nucleation kinetics of Fe-rich intermetallics play a decisive role in the selection of competing α-Al15(FeMn)3Si2 and β-Al5FeSi intermetallic phases for the precipitation during alloy solidification. Moreover, grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy by Al-5B showed comparable performance to that of Al-5Ti-1B master alloy, however, without any deleterious influence on the precipitation sequence of Fe-rich phases, i.e. deleterious β-Al5FeSi reaction remained unfavourable during alloy solidification. Experimental findings from the investigations of the effect of deliberate Zr and V addition revealed that Zr and V addition can induce the grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy. While Zr addition yielded the formation of pro-peritectic Zr-rich particles, which are found to nucleate primary α-Al at low undercooling, the effect of adding V can be characterized by the enhancement of the degree of constitutional undercooling. Combined Zr and V addition showed more effective grain refinement level than their individual additions. Majority of both Zr and V added to the alloy were retained inside α-Al matrix during solidification. As a result, limited amounts of Zr and V were rejected to the interdendritic liquid by the growing α-Al dendrites, then forming small-sized and rarely distributed intermetallics. Owing to its low solid solubility in α-Al, nickel available as impurity (~ 200 ppm) or after deliberate addition (0.25 wt.%) in secondary Al-7Si-3Cu-0.3Mg alloy was mainly bound to interdendritic, insoluble intermetallics, such as Al6Cu3Ni and Al9(FeCu)Ni phases. The presence of ~ 200 ppm Ni was sufficient to diminish to a certain extent the precipitation hardening effect of Cu. Interdendritic Zr/V/Ni-rich phases remained undissolved into the α-Al matrix during solution heat treatment. Therefore, the supersaturated transition metals in α-Al solid solution obtained during solidification was only involved in the solid-state precipitation occurring during heat treatment. Unlike Cu/Mg-rich strengthening precipitates that commonly form during aging, the Zr/V-rich precipitates tended to form during solution heat treatment. Other transition metals, such as Mn, Fe, Cr and Ti, which were present as impurities in secondary Al-7Si-3Cu-0.3Mg alloy significantly promoted the formation of nano-sized Zr/V-rich precipitates inside α-Al grains. These thermally more stable precipitates, including novel α-Al(MnVFe)Si, were credited for the enhanced high-temperature strength properties of Al-7Si-3Cu-0.3Mg alloy by ~ 20 %.Secondary Al-Si-Cu-Mg based foundry alloys are widely used in automotive industry to particularly produce powertrain cast components mainly due to their good ratio between weight and mechanical properties, and excellent casting characteristics. Presence of impurity elements, such as Fe, Mn, Cr, Ti, V and Zr, in secondary Al-Si alloys is one of the critical issues since these elements tend to reduce alloy mechanical properties. There is an ongoing effort to control the formation of intermetallic phases containing transition metals, during alloy solidification. Although phases formation involving these transition metal impurities in non-grain-refined Al-Si alloys is well documented in the literature, the role of grain refinement in microstructural evolution of secondary Al-Si-Cu-Mg alloys needs further experimental investigations since chemical grain refinement is one of the critical melt treatment operations in foundries. The primary aim of this PhD work is thus defined to characterize the formation of intermetallic phases containing transition metals in secondary Al-7Si-3Cu-0.3Mg alloy before and after grain refinement by different master alloys and contribute to the understanding of the mechanisms underlying the microstructural changes occurring with the addition of grain refiner. Another critical issue related to Al-Si-Cu-Mg alloys is their limited thermal stability at temperatures above 200 oC. The operating temperature in engine combustion chamber is reported to often exceed 200 oC during service. Moreover, a further increase of operating temperature is anticipated due to the expected engine power enhancement in near future, which indicates the necessity for the development of a new creep-resistant Al alloys. Deliberate addition of transition metals is believed to yield a new heat-resistant alloy by promoting the formation of thermally stable dispersoids inside α-Al grains. This study thus also attempted to investigate the effect of adding transition metals Zr, V and Ni on the solidification processing, microstructural evolution and room/high-temperature tensile properties of secondary Al-7Si-3Cu-0.3Mg alloy, one of the most used alloys in automotive engine manufacturing. The influence of transition metal impurities on microstructural evolution of secondary Al-7Si-3Cu-0.3Mg alloy was investigated before and after chemical treatment with different master alloys: Al-10Sr, Al-5Ti-1B, Al-10Ti and Al-5B. The Al-10Zr, Al-10V and Al-25Ni master alloys were used for the experimental investigations of the effects of deliberate additions of transition metals on the solidification path, microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy. Solidification path of the alloys was characterized by the traditional thermal analysis technique and differential scanning calorimetry (DSC). Optical microscope (OM), scanning electron microscope (SEM) equipped with energy-dispersive (EDS), wavelength-dispersive spectrometers (WDS) and electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) equipped with EDS were used to characterize the type, morphology and distribution of the phases precipitated during solidification and heat treatment of the studied alloys. The static tensile properties of the alloys were characterized at room (20 oC) and high temperatures (200 and 300 ºC). Experimental findings indicate that the Sr-modification and grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy with Al-Ti-B can be enough effective despite the presence of transition metal impurities in the material and the variation of pouring temperature. However, the V and Zr (~100 ppm each) available in secondary Al-7Si-3Cu-0.3Mg alloy tended to promote the precipitation of harmful, primary AlSiTi intermetallics during solidification of grain-refined alloy. This implies that more effective optimization of grain refiner addition level in secondary Al foundry alloys can be achieved by considering the role of transition metal impurities, Ti, V and Zr, since the formation of primary AlSiTi particles causes (1) the depletion of Ti needed for effective α-Al grains growth restriction and (2) the formation of casting defects, such as shrinkage, due to their flaky morphology. Iron available in secondary Al-7Si-3Cu-0.3Mg alloy as impurity only formed more desirable α-Al15(FeMn)3Si2 phase in non-grain refined state. After grain refinement by Al-5Ti-1B, Fe was also involved in the formation of more deleterious β-Al5FeSi phase. The TiB2 particles acted as nucleation site for β-Al5FeSi phase. Both higher cooling rate and higher Al-5Ti-1B addition levels tended to promote the formation of deleterious β-Al5FeSi at the expense of α-Al15(FeMn)3Si2 in the alloy refined by Al-5Ti-1B. This implies that rather than the ratio between Mn and Fe, the nucleation kinetics of Fe-rich intermetallics play a decisive role in the selection of competing α-Al15(FeMn)3Si2 and β-Al5FeSi intermetallic phases for the precipitation during alloy solidification. Moreover, grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy by Al-5B showed comparable performance to that of Al-5Ti-1B master alloy, however, without any deleterious influence on the precipitation sequence of Fe-rich phases, i.e. deleterious β-Al5FeSi reaction remained unfavourable during alloy solidification. Experimental findings from the investigations of the effect of deliberate Zr and V addition revealed that Zr and V addition can induce the grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy. While Zr addition yielded the formation of pro-peritectic Zr-rich particles, which are found to nucleate primary α-Al at low undercooling, the effect of adding V can be characterized by the enhancement of the degree of constitutional undercooling. Combined Zr and V addition showed more effective grain refinement level than their individual additions. Majority of both Zr and V added to the alloy were retained inside α-Al matrix during solidification. As a result, limited amounts of Zr and V were rejected to the interdendritic liquid by the growing α-Al dendrites, then forming small-sized and rarely distributed intermetallics. Owing to its low solid solubility in α-Al, nickel available as impurity (~ 200 ppm) or after deliberate addition (0.25 wt.%) in secondary Al-7Si-3Cu-0.3Mg alloy was mainly bound to interdendritic, insoluble intermetallics, such as Al6Cu3Ni and Al9(FeCu)Ni phases. The presence of ~ 200 ppm Ni was sufficient to diminish to a certain extent the precipitation hardening effect of Cu. Interdendritic Zr/V/Ni-rich phases remained undissolved into the α-Al matrix during solution heat treatment. Therefore, the supersaturated transition metals in α-Al solid solution obtained during solidification was only involved in the solid-state precipitation occurring during heat treatment. Unlike Cu/Mg-rich strengthening precipitates that commonly form during aging, the Zr/V-rich precipitates tended to form during solution heat treatment. Other transition metals, such as Mn, Fe, Cr and Ti, which were present as impurities in secondary Al-7Si-3Cu-0.3Mg alloy significantly promoted the formation of nano-sized Zr/V-rich precipitates inside α-Al grains. These thermally more stable precipitates, including novel α-Al(MnVFe)Si, were credited for the enhanced high-temperature strength properties of Al-7Si-3Cu-0.3Mg alloy by ~ 20 %

    Tajikistan’s Perspective on Eurasia

    No full text

    Development and characterization of a new generation of transition elements based secondary Al-Si-Cu-Mg foundry alloys

    Get PDF
    Secondary Al-Si-Cu-Mg based foundry alloys are widely used in automotive industry to particularly produce powertrain cast components mainly due to their good ratio between weight and mechanical properties, and excellent casting characteristics. Presence of impurity elements, such as Fe, Mn, Cr, Ti, V and Zr, in secondary Al-Si alloys is one of the critical issues since these elements tend to reduce alloy mechanical properties. There is an ongoing effort to control the formation of intermetallic phases containing transition metals, during alloy solidification. Although phases formation involving these transition metal impurities in non-grain-refined Al-Si alloys is well documented in the literature, the role of grain refinement in microstructural evolution of secondary Al-Si-Cu-Mg alloys needs further experimental investigations since chemical grain refinement is one of the critical melt treatment operations in foundries. The primary aim of this PhD work is thus defined to characterize the formation of intermetallic phases containing transition metals in secondary Al-7Si-3Cu-0.3Mg alloy before and after grain refinement by different master alloys and contribute to the understanding of the mechanisms underlying the microstructural changes occurring with the addition of grain refiner. Another critical issue related to Al-Si-Cu-Mg alloys is their limited thermal stability at temperatures above 200 oC. The operating temperature in engine combustion chamber is reported to often exceed 200 oC during service. Moreover, a further increase of operating temperature is anticipated due to the expected engine power enhancement in near future, which indicates the necessity for the development of a new creep-resistant Al alloys. Deliberate addition of transition metals is believed to yield a new heat-resistant alloy by promoting the formation of thermally stable dispersoids inside α-Al grains. This study thus also attempted to investigate the effect of adding transition metals Zr, V and Ni on the solidification processing, microstructural evolution and room/high-temperature tensile properties of secondary Al-7Si-3Cu-0.3Mg alloy, one of the most used alloys in automotive engine manufacturing. The influence of transition metal impurities on microstructural evolution of secondary Al-7Si-3Cu-0.3Mg alloy was investigated before and after chemical treatment with different master alloys: Al-10Sr, Al-5Ti-1B, Al-10Ti and Al-5B. The Al-10Zr, Al-10V and Al-25Ni master alloys were used for the experimental investigations of the effects of deliberate additions of transition metals on the solidification path, microstructure and mechanical properties of secondary Al-7Si-3Cu-0.3Mg alloy. Solidification path of the alloys was characterized by the traditional thermal analysis technique and differential scanning calorimetry (DSC). Optical microscope (OM), scanning electron microscope (SEM) equipped with energy-dispersive (EDS), wavelength-dispersive spectrometers (WDS) and electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) equipped with EDS were used to characterize the type, morphology and distribution of the phases precipitated during solidification and heat treatment of the studied alloys. The static tensile properties of the alloys were characterized at room (20 oC) and high temperatures (200 and 300 ºC). Experimental findings indicate that the Sr-modification and grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy with Al-Ti-B can be enough effective despite the presence of transition metal impurities in the material and the variation of pouring temperature. However, the V and Zr (~100 ppm each) available in secondary Al-7Si-3Cu-0.3Mg alloy tended to promote the precipitation of harmful, primary AlSiTi intermetallics during solidification of grain-refined alloy. This implies that more effective optimization of grain refiner addition level in secondary Al foundry alloys can be achieved by considering the role of transition metal impurities, Ti, V and Zr, since the formation of primary AlSiTi particles causes (1) the depletion of Ti needed for effective α-Al grains growth restriction and (2) the formation of casting defects, such as shrinkage, due to their flaky morphology. Iron available in secondary Al-7Si-3Cu-0.3Mg alloy as impurity only formed more desirable α-Al15(FeMn)3Si2 phase in non-grain refined state. After grain refinement by Al-5Ti-1B, Fe was also involved in the formation of more deleterious β-Al5FeSi phase. The TiB2 particles acted as nucleation site for β-Al5FeSi phase. Both higher cooling rate and higher Al-5Ti-1B addition levels tended to promote the formation of deleterious β-Al5FeSi at the expense of α-Al15(FeMn)3Si2 in the alloy refined by Al-5Ti-1B. This implies that rather than the ratio between Mn and Fe, the nucleation kinetics of Fe-rich intermetallics play a decisive role in the selection of competing α-Al15(FeMn)3Si2 and β-Al5FeSi intermetallic phases for the precipitation during alloy solidification. Moreover, grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy by Al-5B showed comparable performance to that of Al-5Ti-1B master alloy, however, without any deleterious influence on the precipitation sequence of Fe-rich phases, i.e. deleterious β-Al5FeSi reaction remained unfavourable during alloy solidification. Experimental findings from the investigations of the effect of deliberate Zr and V addition revealed that Zr and V addition can induce the grain refinement of secondary Al-7Si-3Cu-0.3Mg alloy. While Zr addition yielded the formation of pro-peritectic Zr-rich particles, which are found to nucleate primary α-Al at low undercooling, the effect of adding V can be characterized by the enhancement of the degree of constitutional undercooling. Combined Zr and V addition showed more effective grain refinement level than their individual additions. Majority of both Zr and V added to the alloy were retained inside α-Al matrix during solidification. As a result, limited amounts of Zr and V were rejected to the interdendritic liquid by the growing α-Al dendrites, then forming small-sized and rarely distributed intermetallics. Owing to its low solid solubility in α-Al, nickel available as impurity (~ 200 ppm) or after deliberate addition (0.25 wt.%) in secondary Al-7Si-3Cu-0.3Mg alloy was mainly bound to interdendritic, insoluble intermetallics, such as Al6Cu3Ni and Al9(FeCu)Ni phases. The presence of ~ 200 ppm Ni was sufficient to diminish to a certain extent the precipitation hardening effect of Cu. Interdendritic Zr/V/Ni-rich phases remained undissolved into the α-Al matrix during solution heat treatment. Therefore, the supersaturated transition metals in α-Al solid solution obtained during solidification was only involved in the solid-state precipitation occurring during heat treatment. Unlike Cu/Mg-rich strengthening precipitates that commonly form during aging, the Zr/V-rich precipitates tended to form during solution heat treatment. Other transition metals, such as Mn, Fe, Cr and Ti, which were present as impurities in secondary Al-7Si-3Cu-0.3Mg alloy significantly promoted the formation of nano-sized Zr/V-rich precipitates inside α-Al grains. These thermally more stable precipitates, including novel α-Al(MnVFe)Si, were credited for the enhanced high-temperature strength properties of Al-7Si-3Cu-0.3Mg alloy by ~ 20 %
    corecore