19 research outputs found

    Apparent digestibility and protein quality evaluation of selected feed ingredients in Seriola dumerili

    Full text link
    This is the peer reviewed version of the following article: Tomas-Vidal, A., Monge-Ortiz, Raquel, Jover Cerda, Miguel, Martínez-Llorens, Silvia. (2019). Apparent digestibility and protein quality evaluation of selected feed ingredients in Seriola dumerili.Journal of the World Aquaculture Society, null. DOI: 10.1111/jwas.12597, which has been published in final form at http://doi.org/10.1111/jwas.12597. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The apparent digestibility coefficients (ADCs) of dry matter, crude protein, crude lipid, and amino acids in fish, krill, squid, meat, defatted krill, soybean, wheat gluten, wheat, camilina, pea, sunflower, and fava bean meals were determined for juvenile Seriola dumerili. The results showed that the ADC of dry matter for yellowtail ranged from 57.7 to 87.2% for animal ingredients and from 42.2 to 82.2% for plant ingredients. An ADC of protein exceeding 90% was observed in fishmeal, while camilina meal and fava bean meal presented the lowest values. Pea meal presented the lowest lipid ADC (83.5%). The availabilities were generally higher in animal ingredients than those in vegetal ones. Except camilina and fava bean meal, the other ingredients appear to be favorable for S. dumerili diets, especially the ones from animal sources. Lower case chemical score values (minimum value from amino acid ratios [AARs]) were obtained in some vegetal ingredients (14¿18%), while the highest ones were observed in marine ingredients (69¿88%). According to Oser's Index, the most balanced protein for yellowtail with regard to essential amino acids was in krill, defatted krill, and fishmeal (92¿96%). So, animal sources are suitable as protein ingredients, but they could be enhanced through some essential amino acid supplementation.This project was financed by the “Ministerio de Ciencia e Innovación” (reference AGL2011-30547-C03).Tomas-Vidal, A.; Monge-Ortiz, R.; Jover Cerda, M.; Martínez-Llorens, S. (2019). Apparent digestibility and protein quality evaluation of selected feed ingredients in Seriola dumerili. Journal of the World Aquaculture Society. https://doi.org/10.1111/jwas.12597

    Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health

    Full text link
    [EN] A reduction in fishmeal in diets is essential to achieve the aim of sustainable production. In the current work, using a plant protein blend of wheat gluten, wheat and soybean meal supplemented with Tau, Val, Lys and Met, a 10% higher fishmeal substitution without affecting growth and health parameters has been accomplished. The aquaculture of carnivorous fish is in continuous expansion, which leads to the need to reduce the dependence on fishmeal (FM). Plant proteins (PP) represent a suitable protein alternative to FM and are increasingly used in fish feed. However, PP may lead to stunted growth and enteritis. In the current study, the effect of high FM substitution by PP sources on the growth, mortality and intestinal health of rainbow trout (Oncorhynchus mykiss) was evaluated in terms of the histological intestine parameters and expression of genes related to inflammation (IL-1 beta, IL-8 and TGF-beta) and immune responses (Transferrin, IgT and IFN-gamma). The results show that a total substitution registered lower growth and survival rates, probably due to a disruption to the animal's health. Confirming this hypothesis, fish fed FM0 showed histological changes in the intestine and gene changes related to inflammatory responses, which in the long-term could have triggered an immunosuppression. The FM10 diet presented not only a similar expression to FM20 (control diet), but also similar growth and survival. Therefore, 90% of FM substitution was demonstrated as being feasible in this species using a PP blend of wheat gluten (WG) and soybean meal (SBM) as a protein source.Vélez-Calabria, G.; Peñaranda, D.; Jover Cerda, M.; Martínez-Llorens, S.; Tomas-Vidal, A. (2021). Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health. Animals. 11(12):1-18. https://doi.org/10.3390/ani11123577S118111

    Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae)

    Full text link
    [EN] The meagre is a fish species of recent interest in aquaculture, because of its fast growth and flesh quality. Nevertheless, it hasn't been studied enough, and feed producers do not have enough information about the nutrient requirements to optimize the feed diets of the meagre. This study measures the growth response of this fish to several amounts of food and gives information about the proportion of protein and energy that should be included in its diet, as well as the recommended amount of food to optimize its growth. The meagre is a carnivorous species and might be a suitable candidate species for the diversification of aquaculture in the Mediterranean region. This is based on its high growth and flesh quality. Nevertheless, there is little information available about its growth rates and nutrient requirements. The objective of this study was to determine the protein and energy requirements of juvenile meagre (Argyrosomus regius). Two trials for different weights of 53 and 188 g were conducted with rations from starvation to apparent satiation with the scope of studying its nutritional needs. In the first trial, the initial mean body weight of the fish was 53 g, and they were fed at feeding rates, measured as a percentage of the body weight, of 0, 0.75, 1.5, 2.5, 3.5, and 4.5%, with two replicates per treatment. In a second trial, another group with approximately 188 g of initial body weight was fed at feeding rates of 0, 0.5, 1.5, and 2.5%, with two replicates per treatment. The optimum thermal growth coefficient was obtained with a feed intake of 2.2% day(-1) in trial A and 1.73% day(-1) in trial B. The digestible protein (DP) intake for maintenance was determined as 0.57 g kg(-0.7) day(-1), the DP intake for maximum growth was 6.0 g kg(-0.7) day(-1), and the point for maximum efficiency in protein retention was 1.8 g kg(-0.7) day(-1). The requirement for digestible energy (DE) intake for maintenance was recorded at 25.4 kJ kg(-0.82) day(-1), the DE intake to maximize growth was 365 kJ kg(-0.82) day(-1), and the point for maximum efficiency in energy retention occurs with a digestible energy intake of 93 kJ kg(-0.82) day(-1). The requirements and retention efficiency of protein and energy in Argyrosomus regius tend to be within the range other fish species. The maintenance needs are in agreement with species with low voluntary activity and growth requirements in agreement with fast-growth species.This research was funded by grants from the Planes Nacionales de Acuicultura (JACUMAR) in Spain.Jauralde García, I.; Velazco-Vargas, J.; Tomas-Vidal, A.; Jover Cerda, M.; Martínez-Llorens, S. (2021). Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae). Animals. 11(1):1-15. https://doi.org/10.3390/ani11010077S115111Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas, C. C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 307(1-2), 65-70. doi:10.1016/j.aquaculture.2010.07.002EL-Shebly, A. A., El-Kady, M. A. H., Hussin, A. B., & Hossain, M. Y. (2007). Preliminary Observations on the Pond Culture of Meagre, Argyrosomus regius (Asso, 1801) (Sciaenidae) in Egypt. Journal of Fisheries and Aquatic Science, 2(5), 345-352. doi:10.3923/jfas.2007.345.352ESTÉVEZ, A., TREVIÑO, L., KOTZAMANIS, Y., KARACOSTAS, I., TORT, L., & GISBERT, E. (2010). Effects of different levels of plant proteins on the ongrowing of meagre (Argyrosomus regius) juveniles at low temperatures. Aquaculture Nutrition, 17(2), e572-e582. doi:10.1111/j.1365-2095.2010.00798.xPoli, B. M., Parisi, G., Zampacavallo, G., Iurzan, F., Mecatti, M., Lupi, P., & Bonelli, A. (2003). Aquaculture International, 11(3), 301-311. doi:10.1023/a:1024840804303Roo, J., Hernández-Cruz, C. M., Borrero, C., Schuchardt, D., & Fernández-Palacios, H. (2010). Effect of larval density and feeding sequence on meagre (Argyrosomus regius; Asso, 1801) larval rearing. Aquaculture, 302(1-2), 82-88. doi:10.1016/j.aquaculture.2010.02.015Chatzifotis, S., Panagiotidou, M., & Divanach, P. (2011). Effect of protein and lipid dietary levels on the growth of juvenile meagre (Argyrosomus regius). Aquaculture International, 20(1), 91-98. doi:10.1007/s10499-011-9443-yAlvarez-González, C. ., Civera-Cerecedo, R., Ortiz-Galindo, J. ., Dumas, S., Moreno-Legorreta, M., & Grayeb-Del Alamo, T. (2001). Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture, 194(1-2), 151-159. doi:10.1016/s0044-8486(00)00512-3Chong, A. S. ., Ishak, S. D., Osman, Z., & Hashim, R. (2004). Effect of dietary protein level on the reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture, 234(1-4), 381-392. doi:10.1016/j.aquaculture.2003.12.003El-Sayed, A.-F. M., & Kawanna, M. (2008). Effects of dietary protein and energy levels on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock in a recycling system. Aquaculture, 280(1-4), 179-184. doi:10.1016/j.aquaculture.2008.04.030Lee, S.-M., Jeon, I. G., & Lee, J. Y. (2002). Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 211(1-4), 227-239. doi:10.1016/s0044-8486(01)00880-8Zhang, J., Zhou, F., Wang, L., Shao, Q., Xu, Z., & Xu, J. (2010). Dietary Protein Requirement of Juvenile Black Sea Bream, Sparus macrocephalus. Journal of the World Aquaculture Society, 41, 151-164. doi:10.1111/j.1749-7345.2010.00356.xTibbetts, S. M., Lall, S. P., & Anderson, D. M. (2000). Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets. Aquaculture, 186(1-2), 145-155. doi:10.1016/s0044-8486(99)00363-4Kaushik, S. J., & Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquaculture Research, 41(3), 322-332. doi:10.1111/j.1365-2109.2009.02174.xGunasekera, R. M., De Silva, S. S., Collins, R. A., Gooley, G., & Ingram, B. A. (2000). Effect of dietary protein level on growth and food utilization in juvenile Murray codMaccullochella peelii peelii(Mitchell). Aquaculture Research, 31(2), 181-187. doi:10.1046/j.1365-2109.2000.00417.xBooth, M. A., Allan, G. L., & Pirozzi, I. (2010). Estimation of digestible protein and energy requirements of yellowtail kingfish Seriola lalandi using a factorial approach. Aquaculture, 307(3-4), 247-259. doi:10.1016/j.aquaculture.2010.07.019Jauralde, I., Martínez-Llorens, S., Tomás, A., & Jover, M. (2016). Protein deposition and energy recovery in gilthead sea bream (Sparus aurata): Evaluation of nutritional requirements. Aquaculture, 464, 65-73. doi:10.1016/j.aquaculture.2016.06.006Lupatsch, I., Kissil, G. W., Sklan, D., & Pfeffer, E. (1998). Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquaculture Nutrition, 4(3), 165-173. doi:10.1046/j.1365-2095.1998.00065.xLupatsch, Kissil, Sklan, & Pfeffer. (2001). Effects of varying dietary protein and energy supply on growth, body composition and protein utilization in gilthead seabream (Sparus aurataL.). Aquaculture Nutrition, 7(2), 71-80. doi:10.1046/j.1365-2095.2001.00150.xPeres, H., & Oliva-Teles, A. (2005). Protein and Energy Metabolism of European Seabass (Dicentrarchus labrax) Juveniles and Estimation of Maintenance Requirements. Fish Physiology and Biochemistry, 31(1), 23-31. doi:10.1007/s10695-005-4586-2Lupatsch, I., & Kissil, G. W. (2005). Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). Aquaculture, 248(1-4), 83-95. doi:10.1016/j.aquaculture.2005.03.004Pirozzi, I., Booth, M. A., & Allan, G. L. (2008). Protein and energy utilization and the requirements for maintenance in juvenile mulloway (Argyrosomus japonicus). Fish Physiology and Biochemistry, 36(1), 109-121. doi:10.1007/s10695-008-9296-0McGoogan, B. B., & Gatlin, D. M. (1998). Metabolic Requirements of Red Drum, Sciaenops ocellatus, for Protein and Energy Based on Weight Gain and Body Composition. The Journal of Nutrition, 128(1), 123-129. doi:10.1093/jn/128.1.123GLENCROSS, B. D. (2009). Reduced water oxygen levels affect maximal feed intake, but not protein or energy utilization efficiency of rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 15(1), 1-8. doi:10.1111/j.1365-2095.2007.00562.xGlencross, B., Hawkins, W., Evans, D., Rutherford, N., Dods, K., McCafferty, P., & Sipsas, S. (2007). Evaluation of the influence of drying process on the nutritional value of lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture, 265(1-4), 218-229. doi:10.1016/j.aquaculture.2007.01.040Rodehutscord, M., & Pfeffer, E. (1999). Maintenance requirement for digestible energy and efficiency of utilisation of digestible energy for retention in rainbow trout, Oncorhynchus mykiss. Aquaculture, 179(1-4), 95-107. doi:10.1016/s0044-8486(99)00155-6Booth, M. A., & Allan, G. L. (2003). Utilization of digestible nitrogen and energy from four agricultural ingredients by juvenile silver perch Bidyanus bidyanus. Aquaculture Nutrition, 9(5), 317-326. doi:10.1046/j.1365-2095.2003.00259.xHatlen, B., Helland, S. J., & Grisdale-Helland, B. (2007). Energy and nitrogen partitioning in 250 g Atlantic cod (Gadus morhua L.) given graded levels of feed with different protein and lipid content. Aquaculture, 270(1-4), 167-177. doi:10.1016/j.aquaculture.2007.04.001GLENCROSS, B. D. (2008). A factorial growth and feed utilization model for barramundi,Lates calcariferbased on Australian production conditions. Aquaculture Nutrition, 14(4), 360-373. doi:10.1111/j.1365-2095.2007.00543.xHelland, S. J., Hatlen, B., & Grisdale-Helland, B. (2010). Energy, protein and amino acid requirements for maintenance and efficiency of utilization for growth of Atlantic salmon post-smolts determined using increasing ration levels. Aquaculture, 305(1-4), 150-158. doi:10.1016/j.aquaculture.2010.04.013Fournier, V., Gouillou-Coustans, M. F., Métailler, R., Vachot, C., Guedes, M. J., Tulli, F., … Kaushik, S. J. (2002). Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition, 87(5), 459-469. doi:10.1079/bjn2002564Bureau, D. P., Hua, K., & Cho, C. Y. (2006). Effect of feeding level on growth and nutrient deposition in rainbow trout (Oncorhynchus mykiss Walbaum) growing from 150 to 600 g. Aquaculture Research, 37(11), 1090-1098. doi:10.1111/j.1365-2109.2006.01532.xAtkinson, J. L., Hilton, J. W., & Slinger, S. J. (1984). Evaluation of Acid-Insoluble Ash as an Indicator of Feed Digestibility in Rainbow Trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences, 41(9), 1384-1386. doi:10.1139/f84-170Watanabe, K., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements of yellowtail for maximum growth and maintenance of body weight. Fisheries Science, 66(6), 1053-1061. doi:10.1046/j.1444-2906.2000.00168.xDumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041Jauralde, I., Martínez-Llorens, S., Tomás, A., Ballestrazzi, R., & Jover, M. (2011). A proposal for modelling the thermal-unit growth coefficient and feed conversion ratio as functions of feeding rate for gilthead sea bream (Sparus aurata,L.) in summer conditions. Aquaculture Research, 44(2), 242-253. doi:10.1111/j.1365-2109.2011.03027.xMayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016Panettieri, V., Chatzifotis, S., Messina, C. M., Olivotto, I., Manuguerra, S., Randazzo, B., … Piccolo, G. (2020). Honey Bee Pollen in Meagre (Argyrosomus regius) Juvenile Diets: Effects on Growth, Diet Digestibility, Intestinal Traits, and Biochemical Markers Related to Health and Stress. Animals, 10(2), 231. doi:10.3390/ani10020231Knibb, W. (2000). Genetic improvement of marine fish - which method for industry? Aquaculture Research, 31(1), 11-23. doi:10.1046/j.1365-2109.2000.00393.xWatanabe, K., Hara, Y., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements for maximum growth and maintenance of bodyweight of yellowtail. Fisheries Science, 66(5), 884-893. doi:10.1046/j.1444-2906.2000.00143.xLupatsch, I., Kissil, G. W., & Sklan, D. (2001). Optimization of feeding regimes for European sea bass Dicentrarchus labrax: a factorial approach. Aquaculture, 202(3-4), 289-302. doi:10.1016/s0044-8486(01)00779-7Arshad Hossain, M., Almatar, S. M., & James, C. M. (2010). Optimum Dietary Protein Level for Juvenile Silver Pomfret, Pampus argenteus (Euphrasen). Journal of the World Aquaculture Society, 41(5), 710-720. doi:10.1111/j.1749-7345.2010.00413.xSandberg, F. B., Emmans, G. C., & Kyriazakis, I. (2005). Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data. British Journal of Nutrition, 93(2), 213-224. doi:10.1079/bjn20041322Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028SÁNCHEZ-LOZANO, N. B., MARTÍNEZ-LLORENS, S., TOMÁS-VIDAL, A., & JOVER CERDÁ, M. (2010). Amino acid retention of gilthead sea bream (Sparus aurata, L.) fed with pea protein concentrate. Aquaculture Nutrition, 17(2), e604-e614. doi:10.1111/j.1365-2095.2010.00803.xHillestad, M., & Johnsen, F. (1994). High-energy/low-protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture, 124(1-4), 109-116. doi:10.1016/0044-8486(94)90366-2Shearer, K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 119(1), 63-88. doi:10.1016/0044-8486(94)90444-

    Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata)

    Full text link
    [EN] This study examined how eco-organic feed affects the growth performance, nutrient efficiency, feed utilisation, and body composition of gilthead seabream. Six different diets were tested, including a control diet (CONT) without organic ingredients and four diets with 100% organic ingredients: trout (TRO), seabass (SBS), poultry (POU), and mix (MIX), along with a control organic diet (ORG) containing organic ingredients and 30% fishmeal. The experiment lasted 70 days, and the fish were fed twice a day, starting with an initial weight of 60.5 g. The results showed that the highest growth rates were observed in fish fed the ORG and CONT diets containing fishmeal. Conversely, the POU diet resulted in the lowest growth rate, survival rate, and highest value for feed conversion ratio (FCR). Almost all essential amino acid efficiency values were high in fish fed the ORG and CONT diets. Still, significant differences were noted in the retention efficiency of fatty acids across all diets. The retention efficiency was higher in the CONT diet, followed by the ORG diet. However, the economic conversion rate was lower for CONT, SBS, TRO, and MIX. Overall, using organic diets of animal origin impacted the growth performance of gilthead seabream, but it is still a promising approach.This project had been developed with the collaboration of the Biodiversity Foundation (Spanish Ministry for Ecological Transition and the Demographic Challenge), through the Pleamar Program, co-financed by the European Maritime and Fisheries Fund (EMFF). A full scholarship from the Ministry of Higher Education of the Arab Republic of Egypt funds the researcher Eslam TefalTefal, E.; Tomas-Vidal, A.; Martínez-Llorens, S.; Jauralde García, I.; Peñaranda, D.; Jover Cerda, M. (2023). Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata). Sustainability. 15(14):1-16. https://doi.org/10.3390/su151410750116151

    Relation of quality and sensory perception with changes in free amino acids of thawed seabream

    Get PDF
    [EN] This study aimed to investigate how the freshness before frozen storage affect the quality and sensory characteristics of seabream in different commercial presentations and to correlate the findings with free amino acids composition. The fish were slaughtered, allocated to three processing treatments (whole, gutted and filleted) and stored at refrigeration (0±1 °C) for different times (5, 9, 11 and 18 days) before one-month frozen storage (¿30 °C). After this time, physicochemical (pH, TVB-N, TBARS and free amino acids), bacterial count and sensory evaluation (Torry Index & Quality Descriptive Analysis -QDA-) were studied. Significant differences were found among treatments over time for TVB-N, TBARS and bacterial growth. The quality index (Torry) exhibited a gradual decrease. QDA showed that fillets had the lowest assessment. Free amino acids contents varied significantly during frozen storage with a particular behavior that depended on the previous treatment applied and the fish freshness degree (elapsed days before frozen)This study was financially supported by the Gobierno de Aragón (Grupo Consolidado de Calidad y Tecnología de la Carne, Ref: A04), Instituto Agroalimentario Mixto de Aragón (IA2) and Institute of Animal Science and Technology, Polytechnic University of Valencia.Calanche, J.; Tomas-Vidal, A.; Martínez-Llorens, S.; Jover Cerda, M.; Alonso, V.; Roncales, P.; Beltrán, J. (2019). Relation of quality and sensory perception with changes in free amino acids of thawed seabream. Food Research International. 119:126-134. https://doi.org/10.1016/j.foodres.2019.01.050S12613411

    Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils

    Get PDF
    [EN] The study aimed to evaluate how replacing different proportions of fish oil (FO) with vegetable oils (VO) in the diet of Mediterranean yellowtail, Seriola dumerili (Risso, 1810), affects the fatty acids (FA) signature, i.e.; overall FA profile, in different tissues. A total of 225 Mediterranean yellowtail juveniles (initial live weight: 176 ± 3.62 g) were fed for 109 days with one of three diets: A control diet (FO 100), with FO as the only lipid source, or diets with 75% and 100% of FO replaced with a VO mixture. At the end of the feeding trial, the brains, muscles, livers, and visceral fat were sampled in four fish per tank (12 per treatment), and their fat were extracted and used for FA analysis. The FA signatures of red and white muscle, liver, and visceral fat tissues changed when the dietary FA source changed, whereas FA signatures in the brain were rather robust to such dietary changes. These new insights might help evaluate whether key physiological functions are preserved when fish are fed diets with low FO levels, as well as define the dietary FA requirements of Mediterranean yellowtail to improve the sustainability of the production and welfare of the fish.The Ph.D. grant held by Francesco Bordignon is funded by the ECCEAQUA project (MIUR; CUP: C26C18000030004).Bordignon, F.; Tomas-Vidal, A.; Trocino, A.; Milián-Sorribes, MC.; Jover Cerda, M.; Martínez-Llorens, S. (2020). Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils. Animals. 10(2):1-16. https://doi.org/10.3390/ani10020198S116102Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K., … Mushiake, K. (2012). Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquaculture Research, n/a-n/a. doi:10.1111/j.1365-2109.2012.03174.xGrau, A., Riera, F., & Carbonell, E. (1999). Aquaculture International, 7(5), 307-317. doi:10.1023/a:1009212520021Sicuro, B., & Luzzana, U. (2016). The State ofSeriola spp.Other Than Yellowtail (S. quinqueradiata) Farming in the World. Reviews in Fisheries Science & Aquaculture, 24(4), 314-325. doi:10.1080/23308249.2016.1187583Mazzola, A., Favaloro, E., & Sarà, G. (2000). Cultivation of the Mediterranean amberjack, Seriola dumerili (Risso, 1810), in submerged cages in the Western Mediterranean Sea. Aquaculture, 181(3-4), 257-268. doi:10.1016/s0044-8486(99)00243-4Jover, M., Garcı́a-Gómez, A., Tomás, A., De la Gándara, F., & Pérez, L. (1999). Growth of mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid. Aquaculture, 179(1-4), 25-33. doi:10.1016/s0044-8486(99)00149-0Takakuwa, F., Fukada, H., Hosokawa, H., & Masumoto, T. (2006). Optimum digestible protein and energy levels and ratio for greater amberjack Seriola dumerili (Risso) fingerling. Aquaculture Research, 37(15), 1532-1539. doi:10.1111/j.1365-2109.2006.01590.xVidal, A. T., De la Gándara García, F., Gómez, A. G., & Cerdá, M. J. (2008). Effect of the protein/energy ratio on the growth of Mediterranean yellowtail (Seriola dumerili). Aquaculture Research, 39(11), 1141-1148. doi:10.1111/j.1365-2109.2008.01975.xPapadakis, I. E., Chatzifotis, S., Divanach, P., & Kentouri, M. (2007). Weaning of greater amberjack (Seriola dumerilii Risso 1810) juveniles from moist to dry pellet. Aquaculture International, 16(1), 13-25. doi:10.1007/s10499-007-9118-xHaouas, W. G., Zayene, N., Guerbej, H., Hammami, M., & Achour, L. (2010). Fatty acids distribution in different tissues of wild and reared Seriola dumerili. International Journal of Food Science & Technology, 45(7), 1478-1485. doi:10.1111/j.1365-2621.2010.02292.xMonge-Ortiz, R., Tomás-Vidal, A., Rodriguez-Barreto, D., Martínez-Llorens, S., Pérez, J. A., Jover-Cerdá, M., & Lorenzo, A. (2017). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition, 24(1), 605-615. doi:10.1111/anu.12595Mourente, G., Tocher, D. R., & Sargent, J. R. (1991). Specific accumulation of docosahexaenoic acid (22∶6n−3) in brain lipids during development of juvenile turbotScophthalmus maximus L. Lipids, 26(11), 871-877. doi:10.1007/bf02535970Sargent, J., Bell, G., McEvoy, L., Tocher, D., & Estevez, A. (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 177(1-4), 191-199. doi:10.1016/s0044-8486(99)00083-6Tocher, D. R., & Harvie, D. G. (1988). Fatty acid compositions of the major phosphoglycerides from fish neural tissues; (n−3) and (n−6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiology and Biochemistry, 5(4), 229-239. doi:10.1007/bf01874800Bell, J. G., Castell, J. D., Tocher, D. R., MacDonald, F. M., & Sargent, J. R. (1995). Effects of different dietary arachidonic acid : docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot (Scophthalmus maximus). Fish Physiology and Biochemistry, 14(2), 139-151. doi:10.1007/bf00002457Sargent, J. R., McEvoy, L. A., & Bell, J. G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155(1-4), 117-127. doi:10.1016/s0044-8486(97)00122-1Tocher, D. R., & Ghioni, C. (1999). Fatty acid metabolism in marine fish: Low activity of fatty acyl Δ5 desaturation in gilthead sea bream (Sparus aurata) cells. Lipids, 34(5), 433-440. doi:10.1007/s11745-999-0382-8Turchini, G. M., Torstensen, B. E., & Ng, W.-K. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57. doi:10.1111/j.1753-5131.2008.01001.xIverson, S. J., Field, C., Don Bowen, W., & Blanchard, W. (2004). QUANTITATIVE FATTY ACID SIGNATURE ANALYSIS: A NEW METHOD OF ESTIMATING PREDATOR DIETS. Ecological Monographs, 74(2), 211-235. doi:10.1890/02-4105James Henderson, R., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26(4), 281-347. doi:10.1016/0163-7827(87)90002-6Furuita, H., Takeuchi, T., & Uematsu, K. (1998). Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture, 161(1-4), 269-279. doi:10.1016/s0044-8486(97)00275-5Anderson, G. J., Connor, W. E., & Corliss, J. D. (1990). Docosahexaenoic Acid Is the Preferred Dietary n-3 Fatty Acid for the Development of the Brain and Retina. Pediatric Research, 27(1), 89-97. doi:10.1203/00006450-199001000-00023Bianconi, S., Santillán, M. E., Solís, M. del R., Martini, A. C., Ponzio, M. F., Vincenti, L. M., … Stutz, G. (2018). Effects of dietary omega-3 PUFAs on growth and development: Somatic, neurobiological and reproductive functions in a murine model. The Journal of Nutritional Biochemistry, 61, 82-90. doi:10.1016/j.jnutbio.2018.07.007Thiemann, G. W. (2008). Using fatty acid signatures to study bear foraging: Technical considerations and future applications. Ursus, 19(1), 59-72. doi:10.2192/08per001r.1Kaushik, S. J., Corraze, G., Radunz-Neto, J., Larroquet, L., & Dumas, J. (2006). Fatty acid profiles of wild brown trout and Atlantic salmon juveniles in the Nivelle basin. Journal of Fish Biology, 68(5), 1376-1387. doi:10.1111/j.0022-1112.2006.01005.xStowasser, G., McAllen, R., Pierce, G. J., Collins, M. A., Moffat, C. F., Priede, I. G., & Pond, D. W. (2009). Trophic position of deep-sea fish—Assessment through fatty acid and stable isotope analyses. Deep Sea Research Part I: Oceanographic Research Papers, 56(5), 812-826. doi:10.1016/j.dsr.2008.12.016Budge, S. M., Penney, S. N., & Lall, S. P. (2012). Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Canadian Journal of Fisheries and Aquatic Sciences, 69(6), 1033-1046. doi:10.1139/f2012-039Magnone, L., Bessonart, M., Rocamora, M., Gadea, J., & Salhi, M. (2015). Diet estimation of Paralichthys orbignyanus in a coastal lagoon via quantitative fatty acid signature analysis. Journal of Experimental Marine Biology and Ecology, 462, 36-49. doi:10.1016/j.jembe.2014.10.008Happel, A., Stratton, L., Pattridge, R., Rinchard, J., & Czesny, S. (2016). Fatty‐acid profiles of juvenile lake trout reflect experimental diets consisting of natural prey. Freshwater Biology, 61(9), 1466-1476. doi:10.1111/fwb.12786Benedito-Palos, L., Navarro, J. C., Kaushik, S., & Pérez-Sánchez, J. (2010). Tissue-specific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil1. Journal of Animal Science, 88(5), 1759-1770. doi:10.2527/jas.2009-2564O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. doi:10.1111/j.1365-2109.2008.02150.xIshizaki, Y., Masuda, R., Uematsu, K., Shimizu, K., Arimoto, M., & Takeuchi, T. (2001). The effect of dietary docosahexaenoic acid on schooling behaviour and brain development in larval yellowtail. Journal of Fish Biology, 58(6), 1691-1703. doi:10.1111/j.1095-8649.2001.tb02323.xFuruita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S., & Imaizumi, K. (1996). Requirements of Larval Yellowtail for Eicosapentaenoic Acid, Docosahexaenoic Acid, and n-3 Highly Unsaturated Fatty Acid. Fisheries science, 62(3), 372-379. doi:10.2331/fishsci.62.372Masuda, R., Takeuchi, T., Tsukamoto, K., Sato, H., Shimizu, K., & Imaizumi, K. (1999). Incorporation of Dietary Docosahexaenoic Acid into the Central Nervous System of the Yellowtail Seriola quinqueradiata. Brain, Behavior and Evolution, 53(4), 173-179. doi:10.1159/000006592Masuda, R., Takeuchi, T., Tsukamoto, K., Ishizaki, Y., Kanematsu, M., & Imaizum, K. (1998). Critical involvement of dietary docosahexaenoic acid in the ontogeny of schooling behaviour in the yellowtail. Journal of Fish Biology, 53(3), 471-484. doi:10.1111/j.1095-8649.1998.tb00996.xMasuda, R., & Tsukamoto, K. (1999). Environmental Biology of Fishes, 56(1/2), 243-252. doi:10.1023/a:1007565508398Mesa-Rodriguez, A., Hernández-Cruz, C. M., Betancor, M. B., Fernández-Palacios, H., Izquierdo, M. S., & Roo, J. (2017). Effect of increasing docosahexaenoic acid content in weaning diets on survival, growth and skeletal anomalies of longfin yellowtail (Seriola rivoliana,Valenciennes 1833). Aquaculture Research, 49(3), 1200-1209. doi:10.1111/are.13573Nasopoulou, C., & Zabetakis, I. (2012). Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT, 47(2), 217-224. doi:10.1016/j.lwt.2012.01.018Bowyer, J. N., Qin, J. G., Smullen, R. P., & Stone, D. A. J. (2012). Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture, 356-357, 211-222. doi:10.1016/j.aquaculture.2012.05.014Bell, J. G., Strachan, F., Good, J. E., & Tocher, D. R. (2006). Effect of dietary echium oil on growth, fatty acid composition and metabolism, gill prostaglandin production and macrophage activity in Atlantic cod (Gadus morhua L.). Aquaculture Research, 37(6), 606-617. doi:10.1111/j.1365-2109.2006.01470.xStoknes, I. S., Økland, H. M. W., Falch, E., & Synnes, M. (2004). Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 138(2), 183-191. doi:10.1016/j.cbpc.2004.03.009Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2012). Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili). Aquaculture, 360-361, 1-9. doi:10.1016/j.aquaculture.2012.07.013Benedito-Palos, L., Navarro, J. C., Sitjà-Bobadilla, A., Gordon Bell, J., Kaushik, S., & Pérez-Sánchez, J. (2008). High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. British Journal of Nutrition, 100(5), 992-1003. doi:10.1017/s0007114508966071Piedecausa, M. A., Mazón, M. J., García García, B., & Hernández, M. D. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263(1-4), 211-219. doi:10.1016/j.aquaculture.2006.09.039Richard, N., Mourente, G., Kaushik, S., & Corraze, G. (2006). Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture, 261(3), 1077-1087. doi:10.1016/j.aquaculture.2006.07.021BOURAOUI, L., SÁNCHEZ-GURMACHES, J., CRUZ-GARCIA, L., GUTIÉRREZ, J., BENEDITO-PALOS, L., PÉREZ-SÁNCHEZ, J., & NAVARRO, I. (2010). Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 17(1), 54-63. doi:10.1111/j.1365-2095.2009.00706.xRegost, C., Arzel, J., Robin, J., Rosenlund, G., & Kaushik, S. . (2003). Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima). Aquaculture, 217(1-4), 465-482. doi:10.1016/s0044-8486(02)00259-4Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2001). Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. The Journal of Nutrition, 131(5), 1535-1543. doi:10.1093/jn/131.5.1535Bell, J. G., & Sargent, J. R. (2003). Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 218(1-4), 491-499. doi:10.1016/s0044-8486(02)00370-8Torstensen, B. E., Froyland, L., & Lie, O. (2004). Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil - effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquaculture Nutrition, 10(3), 175-192. doi:10.1111/j.1365-2095.2004.00289.xSaito, H. (2012). Lipid characteristics of two subtropical Seriola fishes, Seriola dumerili and Seriola rivoliana, with differences between cultured and wild varieties. Food Chemistry, 135(3), 1718-1729. doi:10.1016/j.foodchem.2012.05.122Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2015). Effect of different rearing conditions on body lipid composition of greater amberjack broodstock (Seriola dumerili ). Aquaculture Research, 48(2), 505-520. doi:10.1111/are.12898Rodríguez-Barreto, D., Jerez, S., Cejas, J. R., Martin, M. V., Acosta, N. G., Bolaños, A., & Lorenzo, A. (2014). Ovary and egg fatty acid composition of greater amberjack broodstock (Seriola dumerili) fed different dietary fatty acids profiles. European Journal of Lipid Science and Technology, 116(5), 584-595. doi:10.1002/ejlt.201300462O’Neill, B., Le Roux, A., & Hoffman, L. C. (2015). Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi). Aquaculture, 448, 169-175. doi:10.1016/j.aquaculture.2015.05.034Rombenso, A. N., Trushenski, J. T., & Drawbridge, M. (2018). Saturated lipids are more effective than others in juvenile California yellowtail feeds—Understanding and harnessing LC-PUFA sparing for fish oil replacement. Aquaculture, 493, 192-203. doi:10.1016/j.aquaculture.2018.04.040SENO-O, A., TAKAKUWA, F., HASHIGUCHI, T., MORIOKA, K., MASUMOTO, T., & FUKADA, H. (2008). Replacement of dietary fish oil with olive oil in young yellowtailSeriola quinqueradiata: effects on growth, muscular fatty acid composition and prevention of dark muscle discoloration during refrigerated storage. Fisheries Science, 74(6), 1297-1306. doi:10.1111/j.1444-2906.2008.01655.xFukada, H., Taniguchi, E., Morioka, K., & Masumoto, T. (2017). Effects of replacing fish oil with canola oil on the growth performance, fatty acid composition and metabolic enzyme activity of juvenile yellowtail Seriola quinqueradiata (Temminck & Schlegel, 1845). Aquaculture Research, 48(12), 5928-5939. doi:10.1111/are.13416Bergman, A. M., Trushenski, J. T., & Drawbridge, M. (2018). Replacing Fish Oil with Hydrogenated Soybean Oils in Feeds for Yellowtail. North American Journal of Aquaculture, 80(2), 141-152. doi:10.1002/naaq.10015Stuart, K., Johnson, R., Armbruster, L., & Drawbridge, M. (2018). Arachidonic Acid in the Diet of Captive Yellowtail and Its Effects on Egg Quality. North American Journal of Aquaculture, 80(1), 97-106. doi:10.1002/naaq.10003Bell, J. G., McGhee, F., Campbell, P. J., & Sargent, J. R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil «wash out». Aquaculture, 218(1-4), 515-528. doi:10.1016/s0044-8486(02)00462-3STUBHAUG, I., LIE, Ø., & TORSTENSEN, B. E. (2007). Fatty acid productive value and ?-oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition, 13(2), 145-155. doi:10.1111/j.1365-2095.2007.00462.xIkemoto, A., Nitta, A., Furukawa, S., Ohishi, M., Nakamura, A., Fujii, Y., & Okuyama, H. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neuroscience Letters, 285(2), 99-102. doi:10.1016/s0304-3940(00)01035-1Kitajka, K., Puskas, L. G., Zvara, A., Hackler, L., Barcelo-Coblijn, G., Yeo, Y. K., & Farkas, T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proceedings of the National Academy of Sciences, 99(5), 2619-2624. doi:10.1073/pnas.042698699Kreps, E. ., Chebotarëva, M. ., & Akulin, V. . (1969). Fatty acid composition of brain and body phospholipids of the anadromous salmon, Oncorhynchus nerka, From fresh-water and marine habitat. Comparative Biochemistry and Physiology, 31(3), 419-430. doi:10.1016/0010-406x(69)90023-1Caballero, M. ., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. . (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271. doi:10.1016/s0044-8486(01)00852-3Campos, I., Matos, E., Maia, M. R. G., Marques, A., & Valente, L. M. P. (2019). Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture, 502, 107-120. doi:10.1016/j.aquaculture.2018.12.004Pagliarani, A., Pirini, M., Trigari, G., & Ventrella, V. (1986). Effect of diets containing different oils on brain fatty acid composition in sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(2), 277-282. doi:10.1016/0305-0491(86)90366-4Skalli, A., Robin, J. H., Le Bayon, N., Le Delliou, H., & Person-Le Ruyet, J. (2006). Impact of essential fatty acid deficiency and temperature on tissues’ fatty acid composition of European sea bass (Dicentrarchus labrax). Aquaculture, 255(1-4), 223-232. doi:10.1016/j.aquaculture.2005.12.00

    Effects of dietary barley on rainbow trout exposed to an acute stress challenge

    Full text link
    Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.[EN] The present study evaluates the effect of dietary barley, based on its potential stress-relieving properties, on rainbow trout under acute stress challenge (hypoxia and crowding) and their recovery. Diets were formulated containing increasing barley concentrations (0, 4, 8, 16, 32%). Cortisol on plasma and fin, glucose and lactate plasma levels and malondialdehyde (MDA) in muscle were determined under normoxia before the stress test (basal levels), 30 min after the acute stress challenge and also during normoxia recovery (6 and 12 h after the stress). Results showed that at basal levels the inclusion of barley had no influence on cortisol, glucose nor on lactate values. After 30 min from the stress challenge, there was a significant increase in cortisol, glucose and lactate concentration in fish of all groups. Plasma cortisol showed the lowest levels in fish fed with diets at a medium (8%) of barley concentration and returned to basal levels 6 h after the stress stimulus with no differences between diets. Glucose values showed a less clear tendency 30 min after the stress challenge with lower levels in the control group, fish fed with 8% and 32% of barley in the diets and returned to basal levels in almost all the groups only 12 h after the stress challenge. Lactate showed the same trend as with glucose after the stress challenge but it returned to basal levels in 6 h. Interestingly, there was a significant decrease of lipid oxidation (MDA) in muscle soon after the stress test of fish fed with the highest barley levels. The present results suggest a potential positive effect of dietary barley on trout stress response.This work has been co-funded with FEDER and INIA funds. Julia Pinedo has been granted with the FPI-INIA grant number 21 (call 2012, BOE-2012-13337).Pinedo-Gil, J.; Martín-Diana, AB.; Bertotto, D.; Sanz-Calvo, M.; Jover Cerda, M.; Tomas-Vidal, A. (2019). Effects of dietary barley on rainbow trout exposed to an acute stress challenge. Aquaculture. 501:32-38. https://doi.org/10.1016/j.aquaculture.2018.10.070S323850

    Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet

    Full text link
    [EN] The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1 beta (IL1-beta), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).The research was supported by a grant financed by the Spanish Ministerio de Economia y Competitividad AGL2015-70487-P. and Generalitat Valenciana, IDIFEDER/2020/029 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. It was additionally granted by Contrato Pre-doctoral para la Formacion de Profesorado Universitario from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain.Peñaranda, D.; Bäuerl, C.; Tomas-Vidal, A.; Jover Cerda, M.; Estruch, G.; Pérez Martínez, G.; Martínez-Llorens, S. (2020). Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet. International Journal of Molecular Sciences. 21(20):1-20. https://doi.org/10.3390/ijms21207584S1202120Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-xGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.xJose L Gonzalez Vecino, M. H. (2015). Probiotic and Pathogen Ex-vivo Exposure of Atlantic Salmon (Salmo Salar L.) Intestine from Fish Fed Four Different Protein Sources. Journal of Aquaculture Research & Development, 06(05). doi:10.4172/2155-9546.1000340Nematollahi, A., Decostere, A., Ducatelle, R., Haesebrouck, F., & Pasmans, F. (2005). Development of a gut perfusion model as an alternative to the use of live fish. Laboratory Animals, 39(2), 194-199. doi:10.1258/0023677053739710Lin, Y.-C., & Chen, J.-C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119. doi:10.1016/s0022-0981(01)00227-1Nematollahi, A., Pasmans, F., Van den Broeck, W., Ducatelle, R., Haesebrouck, F., & Decostere, A. (2005). Association of Flavobacterium psychrophilum strains with intestinal explants of rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 67, 67-72. doi:10.3354/dao067067Harper, G. M., Monfort, M., & Saoud, I. P. (2011). An ex vivo approach to studying the interactions of probiotic Pediococcus acidilactici and Vibrio (Listonella) anguillarum in the anterior intestine of rainbow trout Oncorhynchus mykiss. Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-004Løvmo Martinsen, L., Salma, W., Myklebust, R., Mayhew, T. M., & Ringø, E. (2011). Carnobacterium maltaromaticum vs. Vibrio (Listonella) anguillarum in the midgut of Atlantic cod (Gadus morhua L.): an ex vivo study. Aquaculture Research, 42(12), 1830-1839. doi:10.1111/j.1365-2109.2010.02784.xRen, P., Xu, L., Yang, Y., He, S., Liu, W., Ringø, E., & Zhou, Z. (2013). Lactobacillus planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂: An ex vivo study. Fish & Shellfish Immunology, 35(1), 146-153. doi:10.1016/j.fsi.2013.04.023Resau, J. H., Sakamoto, K., Cottrell, J. R., Hudson, E. A., & Meltzer, S. J. (1991). Explant organ culture: A review. Cytotechnology, 7(3), 137-149. doi:10.1007/bf00365924Dame, M. K., Bhagavathula, N., Mankey, C., DaSilva, M., Paruchuri, T., Aslam, M. N., & Varani, J. (2009). Human colon tissue in organ culture: preservation of normal and neoplastic characteristics. In Vitro Cellular & Developmental Biology - Animal, 46(2), 114-122. doi:10.1007/s11626-009-9247-9Bäuerl, C., Llopis, M., Antolín, M., Monedero, V., Mata, M., Zúñiga, M., … Pérez Martínez, G. (2012). Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa. Genes & Nutrition, 8(2), 165-180. doi:10.1007/s12263-012-0301-yMonge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83-108. doi:10.1111/j.1365-2761.2011.01333.xMartínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.xMARTÍNEZ-LLORENS, S., VIDAL, A. T., GARCIA, I. J., TORRES, M. P., & CERDÁ, M. J. (2009). Optimum dietary soybean meal level for maximizing growth and nutrient utilization of on-growing gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 15(3), 320-328. doi:10.1111/j.1365-2095.2008.00597.xKrogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research, 41(3), 333-344. doi:10.1111/j.1365-2109.2009.02426.xKrogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 9(6), 361-371. doi:10.1046/j.1365-2095.2003.00264.xURÁN, P. A., SCHRAMA, J. W., JAAFARI, S., BAARDSEN, G., ROMBOUT, J. H. W. M., KOPPE, W., & VERRETH, J. A. J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 15(5), 492-499. doi:10.1111/j.1365-2095.2008.00615.xKokou, F., Sarropoulou, E., Cotou, E., Rigos, G., Henry, M., Alexis, M., & Kentouri, M. (2015). Effects of Fish Meal Replacement by a Soybean Protein on Growth, Histology, Selected Immune and Oxidative Status Markers of Gilthead Sea Bream, Sparus aurata. Journal of the World Aquaculture Society, 46(2), 115-128. doi:10.1111/jwas.12181Pereira, T. G., & Oliva-Teles, A. (2003). Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquaculture Research, 34(13), 1111-1117. doi:10.1046/j.1365-2109.2003.00909.xMartínez-Llorens, S., Baeza-Ariño, R., Nogales-Mérida, S., Jover-Cerdá, M., & Tomás-Vidal, A. (2012). Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: Amino acid retention, digestibility, gut and liver histology. Aquaculture, 338-341, 124-133. doi:10.1016/j.aquaculture.2012.01.029Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031Estensoro, I., Ballester-Lozano, G., Benedito-Palos, L., Grammes, F., Martos-Sitcha, J. A., Mydland, L.-T., … Pérez-Sánchez, J. (2016). Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLOS ONE, 11(11), e0166564. doi:10.1371/journal.pone.0166564Kokou, F., Sarropoulou, E., Cotou, E., Kentouri, M., Alexis, M., & Rigos, G. (2017). Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream ( Sparus aurata L.). Fish & Shellfish Immunology, 64, 111-121. doi:10.1016/j.fsi.2017.03.017Couso, N., Castro, R., Magariños, B., Obach, A., & Lamas, J. (2003). Effect of oral administration of glucans on the resistance of gilthead seabream to pasteurellosis. Aquaculture, 219(1-4), 99-109. doi:10.1016/s0044-8486(03)00019-xMauri, I., Romero, A., Acerete, L., MacKenzie, S., Roher, N., Callol, A., … Tort, L. (2011). Changes in complement responses in Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) under crowding stress, plus viral and bacterial challenges. Fish & Shellfish Immunology, 30(1), 182-188. doi:10.1016/j.fsi.2010.10.006Reyes-Becerril, M., López-Medina, T., Ascencio-Valle, F., & Esteban, M. Á. (2011). Immune response of gilthead seabream (Sparus aurata) following experimental infection with Aeromonas hydrophila. Fish & Shellfish Immunology. doi:10.1016/j.fsi.2011.07.006Piazzon, M. C., Galindo-Villegas, J., Pereiro, P., Estensoro, I., Calduch-Giner, J. A., Gómez-Casado, E., … Pérez-Sánchez, J. (2016). Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Frontiers in Immunology, 7. doi:10.3389/fimmu.2016.00637Monge-Ortiz, R., Tomás-Vidal, A., Gallardo-Álvarez, F. J., Estruch, G., Godoy-Olmos, S., Jover-Cerdá, M., & Martínez-Llorens, S. (2018). Partial and total replacement of fishmeal by a blend of animal and plant proteins in diets for Seriola dumerili : Effects on performance and nutrient efficiency. Aquaculture Nutrition, 24(4), 1163-1174. doi:10.1111/anu.12655Torrecillas, S., Caballero, M. J., Mompel, D., Montero, D., Zamorano, M. J., Robaina, L., … Izquierdo, M. (2017). Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass ( Dicentrarchus labrax ) fed low fish meal and fish oil diets. Fish & Shellfish Immunology, 67, 302-311. doi:10.1016/j.fsi.2017.06.022Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLOS ONE, 10(8), e0136389. doi:10.1371/journal.pone.0136389Estruch, G., Martínez-Llorens, S., Tomás-Vidal, A., Monge-Ortiz, R., Jover-Cerdá, M., Brown, P. B., & Peñaranda, D. S. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics, 216, 103672. doi:10.1016/j.jprot.2020.103672Estruch, G., Collado, M. C., Monge-Ortiz, R., Tomás-Vidal, A., Jover-Cerdá, M., Peñaranda, D. S., … Martínez-Llorens, S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research, 14(1). doi:10.1186/s12917-018-1626-6Evaluation of Prebiotic and Probiotic Effects on the Intestinal Gut Microbiota and Histology of Atlantic salmon (Salmo salar L.). (2011). Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-009Løkka, G., & Koppang, E. O. (2016). Antigen sampling in the fish intestine. Developmental & Comparative Immunology, 64, 138-149. doi:10.1016/j.dci.2016.02.014Secombes, C. J., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K. J., … Zou, J. (2001). Cytokines and innate immunity of fish. Developmental & Comparative Immunology, 25(8-9), 713-723. doi:10.1016/s0145-305x(01)00032-5Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:10.1016/j.fsi.2013.09.032Krogdahl, Bakke-Mckellep, RØed, & Baeverfjord. (2000). Feeding Atlantic salmonSalmo salarL. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquaculture Nutrition, 6(2), 77-84. doi:10.1046/j.1365-2095.2000.00129.xSalinas, I., Zhang, Y.-A., & Sunyer, J. O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Developmental & Comparative Immunology, 35(12), 1346-1365. doi:10.1016/j.dci.2011.11.009Chasiotis, H., Effendi, J. C., & Kelly, S. P. (2008). Occludin expression in goldfish held in ion-poor water. Journal of Comparative Physiology B, 179(2), 145-154. doi:10.1007/s00360-008-0297-1Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028Savan, R., & Sakai, M. (2006). Genomics of fish cytokines. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(1), 89-101. doi:10.1016/j.cbd.2005.08.005Torrecillas, S., Montero, D., Caballero, M. J., Robaina, L., Zamorano, M. J., Sweetman, J., & Izquierdo, M. (2015). Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish & Shellfish Immunology, 42(2), 508-516. doi:10.1016/j.fsi.2014.11.033Kono, T., Bird, S., Sonoda, K., Savan, R., Secombes, C. J., & Sakai, M. (2008). Characterization and expression analysis of an interleukin-7 homologue in the Japanese pufferfish, Takifugu rubripes. FEBS Journal, 275(6), 1213-1226. doi:10.1111/j.1742-4658.2008.06281.xPelegrı́n, P., Garcı́a-Castillo, J., Mulero, V., & Meseguer, J. (2001). INTERLEUKIN-1β ISOLATED FROM A MARINE FISH REVEALS UP-REGULATED EXPRESSION IN MACROPHAGES FOLLOWING ACTIVATION WITH LIPOPOLYSACCHARIDE AND LYMPHOKINES. Cytokine, 16(2), 67-72. doi:10.1006/cyto.2001.0949Chaves-Pozo, E., Pelegr�n, P., Garc�a-Castillo, J., Garc�a-Ayala, A., Mulero, V., & Meseguer, J. (2004). Acidophilic granulocytes of the marine fish gilthead seabream ( Sparus aurata L.) produce interleukin-1� following infection with Vibrio anguillarum. Cell and Tissue Research, 316(2), 189-195. doi:10.1007/s00441-004-0875-9Sepulcre, M. P., López-Castejón, G., Meseguer, J., & Mulero, V. (2007). The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Molecular Immunology, 44(8), 2009-2016. doi:10.1016/j.molimm.2006.09.022Boltaña, S., Tridico, R., Teles, M., Mackenzie, S., & Tort, L. (2014). Lipopolysaccharides isolated from Aeromonas salmonicida and Vibrio anguillarum show quantitative but not qualitative differences in inflammatory outcome in Sparus aurata (Gilthead seabream). Fish & Shellfish Immunology, 39(2), 475-482. doi:10.1016/j.fsi.2014.06.003Newton, R., Seybold, J., Liu, S. F., & Barnes, P. J. (1997). Alternate COX-2 Transcripts Are Differentially Regulated: Implications for Post-Transcriptional Control. Biochemical and Biophysical Research Communications, 234(1), 85-89. doi:10.1006/bbrc.1997.6586Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12(1), 64-76. doi:10.1016/s0952-7915(99)00052-7Petit, J., Embregts, C. W. E., Forlenza, M., & Wiegertjes, G. F. (2019). Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. The Journal of Immunology, 203(1), 216-224. doi:10.4049/jimmunol.1900137Cerezuela, R., Meseguer, J., & Esteban, M. Á. (2013). Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 34(3), 843-848. doi:10.1016/j.fsi.2012.12.026Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9. doi:10.1038/s12276-018-0126-xFredenburgh, L. E., Suárez Velandia, M. M., Ma, J., Olszak, T., Cernadas, M., Englert, J. A., … Perrella, M. A. (2011). Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality during Polymicrobial Sepsis. The Journal of Immunology, 187(10), 5255-5267. doi:10.4049/jimmunol.1101186De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006Lazzarotto, V., Médale, F., Larroquet, L., & Corraze, G. (2018). Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLOS ONE, 13(1), e0190730. doi:10.1371/journal.pone.0190730Ye, G., Dong, X., Yang, Q., Chi, S., Liu, H., Zhang, H., … Zhang, S. (2020). Dietary replacement of fish meal with peanut meal in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂): Growth performance, immune response and intestinal microbiota. Aquaculture Reports, 17, 100327. doi:10.1016/j.aqrep.2020.100327Rojo, I., de Ilárduya, Ó. M., Estonba, A., & Pardo, M. Á. (2007). Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish & Shellfish Immunology, 23(6), 1285-1293. doi:10.1016/j.fsi.2007.07.002Doménech, A., Fernández-Garayzábal, J. ., Lawson, P., García, J. ., Cutuli, M. ., Blanco, M., … Domínguez, L. (1997). Winter disease outbreak in sea-bream (Sparus aurata) associated with Pseudomonas anguilliseptica infection. Aquaculture, 156(3-4), 317-326. doi:10.1016/s0044-8486(97)00069-0Colorni, A., Paperna, I., & Gordin, H. (1981). Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture, 23(1-4), 257-267. doi:10.1016/0044-8486(81)90019-3Balebona, M. C., Andreu, M. J., Bordas, M. A., Zorrilla, I., Moriñigo, M. A., & Borrego, J. J. (1998). Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream ( Sparus aurata L.). Applied and Environmental Microbiology, 64(11), 4269-4275. doi:10.1128/aem.64.11.4269-4275.1998Liu, X.-F., Cao, Y., Zhang, H.-L., Chen, Y.-J., & Hu, C.-J. (2015). Complete Genome Sequence of Vibrio alginolyticus ATCC 17749 T. Genome Announcements, 3(1). doi:10.1128/genomea.01500-14Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002Simán, C. M., Sibley, C. P., Jones, C. J. P., Turner, M. A., & Greenwood, S. L. (2001). The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 280(4), R1116-R1122. doi:10.1152/ajpregu.2001.280.4.r1116Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.4

    Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.)

    Full text link
    [EN] The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. Significance: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.The first author was supported by a contract-grant (Contrato Pre doctoral para la Formacion de Profesorado Universitario) from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain.Estruch, G.; Martínez-Llorens, S.; Tomas-Vidal, A.; Monge-Ortiz, R.; Jover Cerda, M.; Brown, PB.; Peñaranda, D. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics. 216:1-13. https://doi.org/10.1016/j.jprot.2020.103672S113216Martínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.xMoutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream ( Sparus aurata ) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468, 271-277. doi:10.1016/j.aquaculture.2016.10.024Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., … Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. doi:10.1016/j.anifeedsci.2017.02.007Nengas, I., Alexis, M. N., & Davies, S. J. (1999). High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture, 179(1-4), 13-23. doi:10.1016/s0044-8486(99)00148-9Monge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68-74. doi:10.1016/j.aquaculture.2008.06.007Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1-2), 111-133. doi:10.1016/j.anifeedsci.2011.12.015Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-xGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.xYu, Y., Sitaraman, S., & Gewirtz, A. T. (2004). Intestinal Epithelial Cell Regulation of Mucosal Inflammation. Immunologic Research, 29(1-3), 055-068. doi:10.1385/ir:29:1-3:055Ivanov, A. I., Parkos, C. A., & Nusrat, A. (2010). Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. The American Journal of Pathology, 177(2), 512-524. doi:10.2353/ajpath.2010.100168Lokman, P., & Symonds, J. (2014). Molecular and biochemical tricks of the research trade: -omics approaches in finfish aquaculture. New Zealand Journal of Marine and Freshwater Research, 48(3), 492-505. doi:10.1080/00288330.2014.928333Forné, I., Abián, J., & Cerdà, J. (2009). Fish proteome analysis: Model organisms and non-sequenced species. PROTEOMICS, 10(4), 858-872. doi:10.1002/pmic.200900609Rodrigues, P. M., Silva, T. S., Dias, J., & Jessen, F. (2012). PROTEOMICS in aquaculture: Applications and trends. Journal of Proteomics, 75(14), 4325-4345. doi:10.1016/j.jprot.2012.03.042Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. doi:10.1038/35015709Karpievitch, Y. V., Polpitiya, A. D., Anderson, G. A., Smith, R. D., & Dabney, A. R. (2010). Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. The Annals of Applied Statistics, 4(4). doi:10.1214/10-aoas341Ahmed, F., Kumar, G., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2019). Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 32, 100625. doi:10.1016/j.cbd.2019.100625Sissener, N. H., Martin, S. A. M., Cash, P., Hevrøy, E. M., Sanden, M., & Hemre, G.-I. (2009). Proteomic Profiling of Liver from Atlantic Salmon (Salmo salar) Fed Genetically Modified Soy Compared to the Near-Isogenic non-GM Line. Marine Biotechnology, 12(3), 273-281. doi:10.1007/s10126-009-9214-1Morais, S., Silva, T., Cordeiro, O., Rodrigues, P., Guy, D. R., Bron, J. E., … Tocher, D. R. (2012). Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics, 13(1), 448. doi:10.1186/1471-2164-13-448Martin, S. A. M., Cash, P., Blaney, S., & Houlihan, D. F. (2001). Fish Physiology and Biochemistry, 24(3), 259-270. doi:10.1023/a:1014015530045Martin, S. A. M., Vilhelmsson, O., Médale, F., Watt, P., Kaushik, S., & Houlihan, D. F. (2003). Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1651(1-2), 17-29. doi:10.1016/s1570-9639(03)00231-0Vilhelmsson, O. T., Martin, S. A. M., Médale, F., Kaushik, S. J., & Houlihan, D. F. (2004). Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 92(1), 71-80. doi:10.1079/bjn20041176Kumar, G., Hummel, K., Razzazi-Fazeli, E., & El-Matbouli, M. (2019). Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Veterinary Research, 50(1). doi:10.1186/s13567-019-0673-8Rajan, B., Lokesh, J., Kiron, V., & Brinchmann, M. F. (2013). Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Veterinary Research, 9(1). doi:10.1186/1746-6148-9-103Saleh, M., Kumar, G., Abdel-Baki, A.-A., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2018). Quantitative shotgun proteomics distinguishes wound-healing biomarker signatures in common carp skin mucus in response to Ichthyophthirius multifiliis. Veterinary Research, 49(1). doi:10.1186/s13567-018-0535-9Saleh, M., Kumar, G., Abdel-Baki, A.-A. S., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2019). Quantitative proteomic profiling of immune responses to Ichthyophthirius multifiliis in common carp skin mucus. Fish & Shellfish Immunology, 84, 834-842. doi:10.1016/j.fsi.2018.10.078ENYU, Y.-L., & SHU-CHIEN, A. C. (2011). Proteomics analysis of mitochondrial extract from liver of female zebrafish undergoing starvation and refeeding. Aquaculture Nutrition, 17(2), e413-e423. doi:10.1111/j.1365-2095.2010.00776.xBoonanuntanasarn, S., Nakharuthai, C., Schrama, D., Duangkaew, R., & Rodrigues, P. M. (2019). Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). Journal of Proteomics, 192, 208-222. doi:10.1016/j.jprot.2018.09.003Ghisaura, S., Anedda, R., Pagnozzi, D., Biosa, G., Spada, S., Bonaglini, E., … Addis, M. F. (2014). Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 12(1). doi:10.1186/s12953-014-0044-3Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L., & Vilella, S. (2019). Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture, 511, 734220. doi:10.1016/j.aquaculture.2019.734220Piazzon, M. C., Calduch-Giner, J. A., Fouz, B., Estensoro, I., Simó-Mirabet, P., Puyalto, M., … Pérez-Sánchez, J. (2017). Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 5(1). doi:10.1186/s40168-017-0390-3Wulff, T., Petersen, J., Nørrelykke, M. R., Jessen, F., & Nielsen, H. H. (2012). Proteome Analysis of Pyloric Ceca: A Methodology for Fish Feed Development? Journal of Agricultural and Food Chemistry, 60(34), 8457-8464. doi:10.1021/jf3016943Pérez-Sánchez, J., Estensoro, I., Redondo, M. J., Calduch-Giner, J. A., Kaushik, S., & Sitjà-Bobadilla, A. (2013). Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis. PLoS ONE, 8(6), e65457. doi:10.1371/journal.pone.0065457Mirghaed, A. T., Yarahmadi, P., Soltani, M., Paknejad, H., & Hoseini, S. M. (2019). Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 92, 621-628. doi:10.1016/j.fsi.2019.06.046Estruch, G., Tomás-Vidal, A., El Nokrashy, A. M., Monge-Ortiz, R., Godoy-Olmos, S., Jover Cerdá, M., & Martínez-Llorens, S. (2018). Inclusion of alternative marine by-products in aquafeeds with different levels of plant-based sources for on-growing gilthead sea bream (Sparus aurata, L.): effects on digestibility, amino acid retention, ammonia excretion and enzyme activity. Archives of Animal Nutrition, 72(4), 321-339. doi:10.1080/1745039x.2018.1472408Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513-2526. doi:10.1074/mcp.m113.031591Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. doi:10.1038/nprot.2008.211Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1-13. doi:10.1093/nar/gkn923Kader, M. A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B. T., & Komilus, C. F. (2012). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 350-353, 109-116. doi:10.1016/j.aquaculture.2012.04.009HERBINGER, C. M., & FRIARS, G. W. (1991). Correlation between condition factor and total lipid content in Atlantic salmon, Salmo salar L., parr. Aquaculture Research, 22(4), 527-529. doi:10.1111/j.1365-2109.1991.tb00766.xJohansson, L., Kiessling, A., Kiessling, K.-H., & Berglund, L. (2000). Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference, 11(3), 247-254. doi:10.1016/s0950-3293(99)00073-7De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006Berg, O. K., Thronæs, E., & Bremset, G. (1998). Energetics and survival of virgin and repeat spawning brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 55(1), 47-53. doi:10.1139/f97-208Saera-Vila, A., Calduch-Giner, J. A., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(2), 224-232. doi:10.1016/j.cbpb.2005.07.009Panserat, S., & Kaushik, S. J. (2010). Regulation of gene expression by nutritional factors in fish. Aquaculture Research, 41(5), 751-762. doi:10.1111/j.1365-2109.2009.02173.xKhurana, S., & George, S. P. (2008). Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Letters, 582(14), 2128-2139. doi:10.1016/j.febslet.2008.02.040Bedford, L., Paine, S., Sheppard, P. W., Mayer, R. J., & Roelofs, J. (2010). Assembly, structure, and function of the 26S proteasome. Trends in Cell Biology, 20(7), 391-401. doi:10.1016/j.tcb.2010.03.007Wu, Y.-X., Yang, J.-H., & Saitsu, H. (2016). Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget, 7(47), 77622-77634. doi:10.18632/oncotarget.12731Fararjeh, Chen, Ho, Cheng, Liu, Chang, … Tu. (2019). Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast Cancer by Stabilizing HER2 from Degradation. Cancers, 11(4), 527. doi:10.3390/cancers11040527Pastorelli, L., De Salvo, C., Mercado, J. R., Vecchi, M., & Pizarro, T. T. (2013). Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00280Babbin, B. A., Laukoetter, M. G., Nava, P., Koch, S., Lee, W. Y., Capaldo, C. T., … Nusrat, A. (2008). Annexin A1 Regulates Intestinal Mucosal Injury, Inflammation, and Repair. The Journal of Immunology, 181(7), 5035-5044. doi:10.4049/jimmunol.181.7.5035Leoni, G., Neumann, P.-A., Sumagin, R., Denning, T. L., & Nusrat, A. (2015). Wound repair: role of immune–epithelial interactions. Mucosal Immunology, 8(5), 959-968. doi:10.1038/mi.2015.63Bakke-McKellep, A. M., Penn, M. H., Salas, P. M., Refstie, S., Sperstad, S., Landsverk, T., … Krogdahl, Å. (2007). Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 97(4), 699-713. doi:10.1017/s0007114507381397Wolf, H. K., & Dittrich, K. L. (1992). Detection of proliferating cell nuclear antigen in diagnostic histopathology. Journal of Histochemistry & Cytochemistry, 40(9), 1269-1273. doi:10.1177/40.9.1354677Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metabolism, 25(1), 27-42. doi:10.1016/j.cmet.2016.08.009Cunningham, K. E., & Turner, J. R. (2012). Myosin light chain kinase: pulling the strings of epithelial tight junction function. Annals of the New York Academy of Sciences, 1258(1), 34-42. doi:10.1111/j.1749-6632.2012.06526.xFanning, A. S., & Anderson, J. M. (1999). PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. Journal of Clinical Investigation, 103(6), 767-772. doi:10.1172/jci6509Werner, T., & Haller, D. (2007). Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 622(1-2), 42-57. doi:10.1016/j.mrfmmm.2007.05.010Lee, S. H. (2015). Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intestinal Research, 13(1), 11. doi:10.5217/ir.2015.13.1.11Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799-809. doi:10.1038/nri2653Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M., & Roy, N. C. (2011). Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. The Journal of Nutrition, 141(5), 769-776. doi:10.3945/jn.110.135657Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., & Frøkiær, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100(1), 120-129. doi:10.1017/s0007114507886338Hu, H., Kortner, T. M., Gajardo, K., Chikwati, E., Tinsley, J., & Krogdahl, Å. (2016). Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source. PLOS ONE, 11(12), e0167515. doi:10.1371/journal.pone.0167515Strober, W., Fuss, I. J., & Blumberg, R. S. (2002). The Immunology of Mucosal Models of Inflammation. Annual Review of Immunology, 20(1), 495-549. doi:10.1146/annurev.immunol.20.100301.064816Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118(2), 229-241. doi:10.1016/j.cell.2004.07.002Neal, M. D., Leaphart, C., Levy, R., Prince, J., Billiar, T. R., Watkins, S., … Hackam, D. J. (2006). Enterocyte TLR4 Mediates Phagocytosis and Translocation of Bacteria Across the Intestinal Barrier. The Journal of Immunology, 176(5), 3070-3079. doi:10.4049/jimmunol.176.5.3070Fink, M. P., & Delude, R. L. (2005). Epithelial Barrier Dysfunction: A Unifying Theme to Explain the Pathogenesis of Multiple Organ Dysfunction at the Cellular Level. Critical Care Clinics, 21(2), 177-196. doi:10.1016/j.ccc.2005.01.005Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequ

    Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value

    Full text link
    [EN] This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154-day feeding experiment was conducted using juveniles (39.2 +/- 1.6g average weight). Three isolipidic and isoenergetic meal-based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n-9) and apparent selective retention of long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.Ministerio de Ciencia e Innovacion (MICINN), Grant/Award Number: AGL2011-30547-C03-02Monge-Ortiz, R.; Tomas-Vidal, A.; Rodriguez-Barreto, D.; Martínez-Llorens, S.; Perez, J.; Jover Cerda, M.; Lorenzo, A. (2018). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition. 24(1):605-615. https://doi.org/10.1111/anu.12595S605615241Abrami, G., Natiello, F., Bronzi, P., McKenzie, D., Bolis, L., & Agradi, E. (1992). A comparison of highly unsaturated fatty acid levels in wild and farmed eels (Anguilla Anguilla). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(1-2), 79-81. doi:10.1016/0305-0491(92)90161-jAlves Martins, D., Rocha, F., Martínez-Rodríguez, G., Bell, G., Morais, S., Castanheira, F., … Conceição, L. E. C. (2011). Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. British Journal of Nutrition, 108(5), 864-874. doi:10.1017/s0007114511006143Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2001). Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. The Journal of Nutrition, 131(5), 1535-1543. doi:10.1093/jn/131.5.1535Bell, J. G., McGhee, F., Campbell, P. J., & Sargent, J. R. (2003). Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil «wash out». Aquaculture, 218(1-4), 515-528. doi:10.1016/s0044-8486(02)00462-3Bell, J. G., & Sargent, J. R. (2003). Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 218(1-4), 491-499. doi:10.1016/s0044-8486(02)00370-8Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R., & Crampton, V. O. (2003). Altered Fatty Acid Compositions in Atlantic Salmon (Salmo salar) Fed Diets Containing Linseed and Rapeseed Oils Can Be Partially Restored by a Subsequent Fish Oil Finishing Diet. The Journal of Nutrition, 133(9), 2793-2801. doi:10.1093/jn/133.9.2793Benedito-Palos, L., Navarro, J. C., Sitjà-Bobadilla, A., Gordon Bell, J., Kaushik, S., & Pérez-Sánchez, J. (2008). High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. British Journal of Nutrition, 100(5), 992-1003. doi:10.1017/s0007114508966071Benedito-Palos, L., Saera-Vila, A., Calduch-Giner, J.-A., Kaushik, S., & Pérez-Sánchez, J. (2007). Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture, 267(1-4), 199-212. doi:10.1016/j.aquaculture.2007.01.011BOURAOUI, L., SÁNCHEZ-GURMACHES, J., CRUZ-GARCIA, L., GUTIÉRREZ, J., BENEDITO-PALOS, L., PÉREZ-SÁNCHEZ, J., & NAVARRO, I. (2010). Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 17(1), 54-63. doi:10.1111/j.1365-2095.2009.00706.xBowyer, J. N., Qin, J. G., Smullen, R. P., Adams, L. R., Thomson, M. J. S., & Stone, D. A. J. (2013). The use of a soy product in juvenile yellowtail kingfish (Seriola lalandi) feeds at different water temperatures: 1. Solvent extracted soybean meal. Aquaculture, 384-387, 35-45. doi:10.1016/j.aquaculture.2012.12.005Bowyer, J. N., Qin, J. G., Smullen, R. P., & Stone, D. A. J. (2012). Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture, 356-357, 211-222. doi:10.1016/j.aquaculture.2012.05.014Bowyer, J. N., Rout-Pitt, N., Bain, P. A., Stone, D. A. J., & Schuller, K. A. (2012). Dietary fish oil replacement with canola oil up-regulates glutathione peroxidase 1 gene expression in yellowtail kingfish (Seriola lalandi). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 162(4), 100-106. doi:10.1016/j.cbpb.2012.04.002Collins, G. M., Ball, A. S., Qin, J. G., Bowyer, J. N., & Stone, D. A. J. (2012). Effect of alternative lipids and temperature on growth factor gene expression in yellowtail kingfish (Seriola lalandi). Aquaculture Research, 45(7), 1236-1245. doi:10.1111/are.12067Coz-Rakovac, R., Smuc, T., Topic Popovic, N., Strunjak-Perovic, I., Hacmanjek, M., & Jadan, M. (2008). Novel methods for assessing fish blood biochemical data. Journal of Applied Ichthyology, 24(1), 77-80. doi:10.1111/j.1439-0426.2007.01041.xCraig, S. R., Washburn, B. S., & Gatlin, III, D. M. (1999). Fish Physiology and Biochemistry, 21(3), 249-255. doi:10.1023/a:1007843420128DÍAZ-LÓPEZ, M., PÉREZ, M. J., ACOSTA, N. G., TOCHER, D. R., JEREZ, S., LORENZO, A., & RODRÍGUEZ, C. (2009). Effect of dietary substitution of fish oil byEchiumoil on growth, plasma parameters and body lipid composition in gilthead seabream (Sparus aurataL.). Aquaculture Nutrition, 15(5), 500-512. doi:10.1111/j.1365-2095.2008.00616.xFountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I., … Alexis, M. N. (2009). Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile. Aquaculture, 289(3-4), 317-326. doi:10.1016/j.aquaculture.2009.01.023Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., & Estévez, A. (2009). Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 287(3-4), 381-387. doi:10.1016/j.aquaculture.2008.10.039Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2), 71-124. doi:10.1111/j.1753-5131.2009.01006.xGlencross, B., Blyth, D., Irvin, S., Bourne, N., Campet, M., Boisot, P., & Wade, N. M. (2016). An evaluation of the complete replacement of both fishmeal and fish oil in diets for juvenile Asian seabass, Lates calcarifer. Aquaculture, 451, 298-309. doi:10.1016/j.aquaculture.2015.09.012Grigorakis, K. (2007). Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture, 272(1-4), 55-75. doi:10.1016/j.aquaculture.2007.04.062Henderson, R. J. (1996). Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Archiv für Tierernaehrung, 49(1), 5-22. doi:10.1080/17450399609381859Huang, S. S. Y., Oo, A. N., Higgs, D. A., Brauner, C. J., & Satoh, S. (2007). Effect of dietary canola oil level on the growth performance and fatty acid composition of juvenile red sea bream, Pagrus major. Aquaculture, 271(1-4), 420-431. doi:10.1016/j.aquaculture.2007.06.004Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., & Rosenlund, G. (2003). Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9(6), 397-407. doi:10.1046/j.1365-2095.2003.00270.xKaushik, S. J., Covès, D., Dutto, G., & Blanc, D. (2004). Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture, 230(1-4), 391-404. doi:10.1016/s0044-8486(03)00422-8Khankari, N. K., Bradshaw, P. T., Steck, S. E., He, K., Olshan, A. F., Shen, J., … Gammon, M. D. (2015). Dietary intake of fish, polyunsaturated fatty acids, and survival after breast cancer: A population-based follow-up study on Long Island, New York. Cancer, 121(13), 2244-2252. doi:10.1002/cncr.29329Khaoian, P., Nguyen, H. P., Ogita, Y., Fukada, H., & Masumoto, T. (2014). Taurine supplementation and palm oil substitution in low-fish meal diets for young yellowtail Seriola quinqueradiata. Aquaculture, 420-421, 219-224. doi:10.1016/j.aquaculture.2013.11.012Kiessling, K.-H., & Kiessling, A. (1993). Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria. Canadian Journal of Zoology, 71(2), 248-251. doi:10.1139/z93-035Kowalska, A., Zakęś, Z., Siwicki, A. K., Jankowska, B., Jarmołowicz, S., & Demska-Zakęś, K. (2011). Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). Fish Physiology and Biochemistry, 38(2), 375-388. doi:10.1007/s10695-011-9514-zLech, G. P., & Reigh, R. C. (2012). Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets. PLoS ONE, 7(4), e34981. doi:10.1371/journal.pone.0034981Lemaire, P., Drai, P., Mathieu, A., Lemaire, S., Carrière, S., Giudicelli, J., & Lafaurie, M. (1991). Changes with different diets in plasma enzymes (GOT, GPT, LDH, ALP) and plasma lipids (cholesterol, triglycerides) of sea-bass (Dicentrarchus labrax). Aquaculture, 93(1), 63-75. doi:10.1016/0044-8486(91)90205-lLin, H., Chen, X., Chen, S., Zhuojia, L., Huang, Z., Niu, J., … Lu, X. (2011). Replacement of fish meal with fermented soybean meal in practical diets for pompanoTrachinotus ovatus. Aquaculture Research, 44(1), 151-156. doi:10.1111/j.1365-2109.2011.03000.xMazzola, A., Favaloro, E., & Sarà, G. (2000). Cultivation of the Mediterranean amberjack, Seriola dumerili (Risso, 1810), in submerged cages in the Western Mediterranean Sea. Aquaculture, 181(3-4), 257-268. doi:10.1016/s0044-8486(99)00243-4Menoyo, D., Izquierdo, M. S., Robaina, L., Ginés, R., Lopez-Bote, C. J., & Bautista, J. M. (2004). Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. British Journal of Nutrition, 92(1), 41-52. doi:10.1079/bjn20041165Mourente, G., & Bell, J. G. (2006). Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 145(3-4), 389-399. doi:10.1016/j.cbpb.2006.08.012Mozanzadeh, M. T., Agh, N., Yavari, V., Marammazi, J. G., Mohammadian, T., & Gisbert, E. (2016). Partial or total replacement of dietary fish oil with alternative lipid sources in silvery-black porgy (Sparidentex hasta). Aquaculture, 451, 232-240. doi:10.1016/j.aquaculture.2015.09.022Nguyen, H. P., Khaoian, P., Fukada, H., Suzuki, N., & Masumoto, T. (2013). Feeding fermented soybean meal diet supplemented with taurine to yellowtailSeriola quinqueradiataaffects growth performance and lipid digestion. Aquaculture Research, 46(5), 1101-1110. doi:10.1111/are.12267Peng, S., Chen, L., Qin, J. G., Hou, J., Yu, N., Long, Z., … Sun, X. (2008). Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli. Aquaculture, 276(1-4), 154-161. doi:10.1016/j.aquaculture.2008.01.035Pérez, J. A., Rodríguez, C., Bolaños, A., Cejas, J. R., & Lorenzo, A. (2014). Beef tallow as an alternative to fish oil in diets for gilthead sea bream (Sparus aurata) juveniles: Effects on fish performance, tissue fatty acid composition, health and flesh nutritional value. European Journal of Lipid Science and Technology, 116(5), 571-583. doi:10.1002/ejlt.201300457Piedecausa, M. A., Mazón, M. J., García García, B., & Hernández, M. D. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture, 263(1-4), 211-219. doi:10.1016/j.aquaculture.2006.09.039Regost, C., Arzel, J., Robin, J., Rosenlund, G., & Kaushik, S. . (2003). Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima). Aquaculture, 217(1-4), 465-482. doi:10.1016/s0044-8486(02)00259-4Richard, N., Mourente, G., Kaushik, S., & Corraze, G. (2006). Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture, 261(3), 1077-1087. doi:10.1016/j.aquaculture.2006.07.021Rossi, W., & Davis, D. A. (2012). Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture, 338-341, 160-166. doi:10.1016/j.aquaculture.2012.01.026Ruyter, B., Moya-Falcón, C., Rosenlund, G., & Vegusdal, A. (2006). Fat content and morphology of liver and intestine of Atlantic salmon (Salmo salar): Effects of temperature and dietary soybean oil. Aquaculture, 252(2-4), 441-452. doi:10.1016/j.aquaculture.2005.07.014Saito, H. (2012). Lipid characteristics of two subtropical Seriola fishes, Seriola dumerili and Seriola rivoliana, with differences between cultured and wild varieties. Food Chemistry, 135(3), 1718-1729. doi:10.1016/j.foodchem.2012.05.122SALES, J., & GLENCROSS, B. (2011). A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquaculture Nutrition, 17(2), e271-e287. doi:10.1111/j.1365-2095.2010.00761.xSARKER, M. S. A., SATOH, S., KAMATA, K., HAGA, Y., & YAMAMOTO, Y. (2011). Partial replacement of fish meal with plant protein sources using organic acids to practical diets for juvenile yellowtail, Seriola quinqueradiata. Aquaculture Nutrition, 18(1), 81-89. doi:10.1111/j.1365-2095.2011.00880.xSENO-O, A., TAKAKUWA, F., HASHIGUCHI, T., MORIOKA, K., MASUMOTO, T., & FUKADA, H. (2008). Replacement of dietary fish oil with olive oil in young yellowtailSeriola quinqueradiata: effects on growth, muscular fatty acid composition and prevention of dark muscle discoloration during refrigerated storage. Fisheries Science, 74(6), 1297-1306. doi:10.1111/j.1444-2906.2008.01655.xSicuro, B., & Luzzana, U. (2016). The State ofSeriola spp.Other Than Yellowtail (S. quinqueradiata) Farming in the World. Reviews in Fisheries Science & Aquaculture, 24(4), 314-325. doi:10.1080/23308249.2016.1187583Simopoulos, A. P. (2008). The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Experimental Biology and Medicine, 233(6), 674-688. doi:10.3181/0711-mr-311Simopoulos, A. P. (2011). Importance of the Omega-6/Omega-3 Balance in Health and Disease: Evolutionary Aspects of Diet. Healthy Agriculture, Healthy Nutrition, Healthy People, 10-21. doi:10.1159/000327785Simopoulos, A. (2016). An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8(3), 128. doi:10.3390/nu8030128STUBHAUG, I., LIE, Ø., & TORSTENSEN, B. E. (2007). Fatty acid productive value and ?-oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition, 13(2), 145-155. doi:10.1111/j.1365-2095.2007.00462.xTacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. doi:10.1016/j.aquaculture.2008.08.015Takakuwa, F., Fukada, H., Hosokawa, H., & Masumoto, T. (2006). Optimum digestible protein and energy levels and ratio for greater amberjack Seriola dumerili (Risso) fingerling. Aquaculture Research, 37(15), 1532-1539. doi:10.1111/j.1365-2109.2006.01590.xTocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. doi:10.1111/j.1365-2109.2008.02150.xTOMAS, A., DE LA GANDARA, F., GARCIA-GOMEZ, A., PEREZ, L., & JOVER, M. (2005). Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, Seriola dumerili. Aquaculture Nutrition, 11(5), 333-340. doi:10.1111/j.1365-2095.2005.00365.xTorstensen, B. E., Froyland, L., & Lie, O. (2004). Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil - effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquaculture Nutrition, 10(3), 175-192. doi:10.1111/j.1365-2095.2004.00289.xTorstensen, B. E., Lie, Ø., & Frøyland, L. (2000). Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—Effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids, 35(6), 653-664. doi:10.1007/s11745-000-0570-6TRUSHENSKI, J., SCHWARZ, M., LEWIS, H., LAPORTE, J., DELBOS, B., TAKEUCHI, R., & SAMPAIO, L. A. (2011). Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobia Rachycentron canadum. Aquaculture Nutrition, 17(2), e437-e447. doi:10.1111/j.1365-2095.2010.00779.xTucker, J. W., Lellis, W. A., Vermeer, G. K., Roberts, D. E., & Woodward, P. N. (1997). The effects of experimental starter diets with different levels of soybean or menhaden oil on red drum (Sciaenops ocellatus). Aquaculture, 149(3-4), 323-339. doi:10.1016/s0044-8486(96)01448-2Turan, H. (2007). Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black Sea. Journal of Fisheries Sciences.com, 1(2), 97-103. doi:10.3153/jfscom.2007012Turchini, G. M., Torstensen, B. E., & Ng, W.-K. (2009). Fish oil replacement in finfish nutrition. Reviews in Aquaculture, 1(1), 10-57. doi:10.1111/j.1753-5131.2008.01001.xUlbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985-992. doi:10.1016/0140-6736(91)91846-mUYAN, O., KOSHIO, S., ISHIKAWA, M., YOKOYAMA, S., UYAN, S., REN, T., & HERNANDEZ, L. H. H. (2009). The influence of dietary phospholipid level on the performances of juvenile amberjack,Seriola dumerili, fed non-fishmeal diets. Aquaculture Nutrition, 15(5), 550-557. doi:10.1111/j.1365-2095.2008.00621.xVidal, A. T., De la Gándara García, F., Gómez, A. G., & Cerdá, M. J. (2008). Effect of the protein/energy ratio on the growth of Mediterranean yellowtail (Seriola dumerili). Aquaculture Research, 39(11), 1141-1148. doi:10.1111/j.1365-2109.2008.01975.xWood, J. ., Richardson, R. ., Nute, G. ., Fisher, A. ., Campo, M. ., Kasapidou, E., … Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21-32. doi:10.1016/s0309-1740(03)00022-
    corecore