676 research outputs found

    Comment on "Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction" [J. Chem. Phys. 137, 22A530 (2012)]

    Full text link
    In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.Comment: 2 pages, published versio

    Estimating internal egg volumes from linear dimensions: isomorphy en eggs belonging to the family Ardeidae

    Get PDF

    Preoperative digital three-dimensional planning for rhinoplasty

    Get PDF
    BACKGROUND: This report describes preoperative digital planning for rhinoplasty using a new three-dimensional (3D) radiologic viewer that allows both patients and surgeons to visualize on a common monitor the 3D real aspect of the nose in its inner and outer sides. METHODS: In the period 2002 to 2008, 210 patients underwent rhinoplasty procedures in the authors' clinic. The patients were randomly divided into three groups according to the type of preoperative planning used: photos only, a simulated result by Adobe Photoshop, or the 3D radiologic viewer. The parameters evaluated included the number of patients that underwent surgery after the first consultation, the number of patients who asked for a reintervention, patient satisfaction (according to a test given to the patients 12 months postoperatively), the surgical time required for a functional intervention, and the improvement in nasal function by postoperative rhinomanometry and subjective evaluation. RESULTS: Computer-aided technologies led to a higher number of patients deciding to undergo a rhinoplasty. Simulation of the postoperative results was not as useful in the postoperative period due to the higher number of reintervention requests. CONCLUSION: The patients undergoing rhinoplasties preferred new technologies in the preoperative period. The advantages of using the 3D radiologic viewer included improved preoperative planning, reduction in intraoperative stress, a higher number of patients undergoing surgery, reduction in postoperative surgical corrections, reduction in surgical time for the functional intervention, a higher rate of improvement in nasal function, a higher percentage of postoperative satisfaction, and reduced costs

    Entropy and canonical ensemble of hybrid quantum classical systems

    Get PDF
    We generalize von Neumann entropy function to hybrid quantum-classical systems by considering the principle of exclusivity of hybrid events. For non-interacting quantum and classical subsystems, this entropy function separates into the sum of the usual classical (Gibbs) and quantum (von Neumann) entropies, whereas if the two parts do interact, it can be properly separated into the classical entropy for the marginal classical probability, and the conditional quantum entropy. We also deduce the hybrid canonical ensemble (HCE) as the one that maximizes this entropy function, for a fixed ensemble energy average. We prove that the HCE is additive for non-interacting systems for all thermodynamic magnitudes, and reproduces the appropriate classical- and quantum-limit ensembles. Furthermore, we discuss how and why Ehrenfest dynamics does not preserve the HCE and does not yield the correct ensemble averages when time-averages of simulations are considered -- even if it can still be used to obtain correct averages by modifying the averaging procedure.Comment: 6 pages + 4 pages Supp. Ma

    About the computation of finite temperature ensemble averages of hybrid quantum-classical systems with molecular dynamics

    Get PDF
    Molecular or condensed matter systems are often well approximated by hybrid quantum-classical models: the electrons retain their quantum character, whereas the ions are considered to be classical particles. We discuss various alternative approaches for the computation of equilibrium (canonical) ensemble averages for observables of these hybrid quantum-classical systems through the use of molecular dynamics (MD)-i.e. by performing dynamics in the presence of a thermostat and computing time-averages over the trajectories. Often, in classical or ab initio MD, the temperature of the electrons is ignored and they are assumed to remain at the instantaneous ground state given by each ionic configuration during the evolution. Here, however, we discuss the general case that considers both classical and quantum subsystems at finite temperature canonical equilibrium. Inspired by a recent formal derivation for the canonical ensemble for quantum classical hybrids, we discuss previous approaches found in the literature, and provide some new formulas

    Spin-phonon interaction and band effects in the high-T_C superconductor HgBa_2CuO_4

    Full text link
    Band calculations show that a stripe-like anti-ferromagnetic spin wave is enforced by a 'half-breathing' phonon distortion within the CuO plane of HgBa_2CuO_4. This spin-phonon coupling is increased further by shear distortion and by increased distance between Cu and apical oxygens. The effects from spin-phonon coupling are consistent with many observations in high-T_C materials. Spin-phonon coupling can be important for the mechanism of spin fluctuations and superconductivity, although the effects are quantitatively weak when using the local density potential.Comment: 4 pages, 1 figur

    Ehrenfest Statistical Dynamics in Chemistry: Study of Decoherence Effects

    Get PDF
    In previous works, we introduced a geometric route to define our Ehrenfest statistical dynamics (ESD) and we proved that, for a simple toy model, the resulting ESD does not preserve purity. We now take a step further: we investigate decoherence and pointer basis in the ESD model by considering some uncertainty in the degrees of freedom of a simple but realistic molecular model, consisting of two classical cores and one quantum electron. The Ehrenfest model is sometimes discarded as a valid approximation to nonadiabatic coupled quantum-classical dynamics because it does not describe the decoherence in the quantum subsystem. However, any rigorous statistical analysis of the Ehrenfest dynamics, such as the described ESD formalism, proves that decoherence exists. In this article, decoherence in ESD is studied by measuring the change in the quantum subsystem purity and by analyzing the appearance of the pointer basis to which the system decoheres, which for our example is composed of the eigenstates of the electronic Hamiltonian.We have received support by Research Grants E24/1 and E24/3 (DGA, Spain), MINECO MTM2015-64166-C2-1-P and FIS2017-82426-P, and MICINN FIS2013-46159-C3-2-P and FIS2014-55867-P. Support from Scholarships B100/13 (DGA) and FPU13/01587 (MECD) for J.A.J.-G. is also acknowledged

    Pressure Studies on a High-TcT_c Superconductor Pseudogap and Critical Temperatures

    Full text link
    We report simultaneous hydrostatic pressure studies on the critical temperature TcT_c and on the pseudogap temperature TT^* performed through resistivity measurements on an optimally doped high-TcT_c oxide Hg0.82Re0.18Ba2Ca2Cu3O8+δHg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+\delta}. The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both TcT_c and TT^* increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on TcT_c is also present at TT^* and both temperatures are originated by the same superconducting mechanism.Comment: 4 pages and 2 figures in eps, final versio
    corecore