15 research outputs found

    A rapid qPCR method to investigate the circulation of the yeast Wickerhamomyces anomalus in humans

    Get PDF
    The yeast Wickerhamomyces anomalus has been proposed for many biotechnological applications in the food industry. However, a number of opportunistic pathogenic strains have been reported as causative agents of nosocomial fungemia. Recognition of potentially pathogenic isolates is an important challenge for the future commercialization of this yeast. The isolation of W. anomalus from different matrices and, recently, from mosquitoes, requires further investigations into its circulation in humans. Here we present a qPCR protocol for the detection of W. anomalus in human blood samples and the results of a screening of 525 donors, including different classes of patients and healthy people

    A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites

    Get PDF
    BACKGROUND: Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these 'killer' yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. METHODS: A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of β-glucanase activity. RESULTS: A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90 %. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a β-glucanase-mediated activity. CONCLUSION: The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts

    Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes

    Get PDF
    It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology

    Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations

    No full text
    Abstract Background Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. Methods In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. Results Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene’s involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. Conclusions The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype. Graphical Abstrac

    Carbapenem-Resistant <i>Acinetobacter baumannii</i>: Biofilm-Associated Genes, Biofilm-Eradication Potential of Disinfectants, and Biofilm-Inhibitory Effects of Selenium Nanoparticles

    No full text
    This study aimed to investigate the biofilm-production ability of carbapenem-resistant Acinetobacter baumannii (CRAB), the biofilm-eradication potential of 70% ethanol and 0.5% sodium hypochlorite, the effects of selenium nanoparticles (SeNPs) against planktonic and biofilm-embedded CRAB, and the relationship between biofilm production and bacterial genotypes. A total of 111 CRAB isolates were tested for antimicrobial susceptibility, biofilm formation, presence of the genes encoding carbapenemases, and biofilm-associated virulence factors. The antibiofilm effects of disinfectants and SeNPs against CRAB isolates were also tested. The vast majority of the tested isolates were biofilm producers (91.9%). The bap, ompA, and csuE genes were found in 57%, 70%, and 76% of the CRAB isolates, with the csuE being significantly more common among biofilm producers (78.6%) compared to non-biofilm-producing CRAB (25%). The tested disinfectants showed a better antibiofilm effect on moderate and strong biofilm producers than on weak producers (p 1.25 mg/mL) and biofilm-embedded CRAB, with a minimum biofilm inhibitory concentration of less than 0.15 mg/mL for 90% of biofilm producers. In conclusion, SeNPs might be used as promising therapeutic and medical device coating agents, thus serving as an alternative approach for the prevention of biofilm-related infections

    Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice

    No full text
    Wickerhamomyces anomalus is a yeast associated with different insects including mosquitoes, where it is proposed to be involved in symbiotic relationships with hosts. Different symbiotic strains of W. anomalus display a killer phenotype mediated by protein toxins with broad-spectrum antimicrobial activities. In particular, a killer toxin purified from a W. anomalus strain (WaF17.12), previously isolated from the malaria vector mosquito Anopheles stephensi, has shown strong in vitro anti-plasmodial activity against early sporogonic stages of the murine malaria parasite Plasmodium berghei

    Prenatal monitoring of pregnancies complicated by diabetes mellitus

    Get PDF
    Preconception and prenatal monitoring evaluate the condition of the mother's underlying disease and possible complications during pregnancy. Before conception, patients with diabetes should be informed that suboptimal glycoregulation is associated with reduced fertility and pregnancy losses. The task of the perinatologist in pregnancies affected by diabetes mellitus is to prevent complications of the underlying disease, such as hypoglycemic crises. Another important component of prenatal care in diabetic pregnancies is the recognition and prevention of pregnancy complications such as preeclampsia, polyhydramnios, congenital malformations, fetal macrosomia, and infections

    Nutrition in pregnancy with diabetes mellitus

    Get PDF
    The nutritional needs of diabetic pregnancies are different from normal pregnancies. Differences in nutritional recommendations can also be seen between pregnant women who are using and who are not using insulin therapy. In this literature review, recommendations for different meal proportions of carbohydrates, proteins, and fats in the diets of pregnant women with diabetes mellitus are listed. Different meal plans were also addressed in this group of patients. The role of exercise in the management of diabetes in pregnancy is undeniable and different approaches found in the literature are presented
    corecore