3 research outputs found

    Mutations on a conserved distal enhancer in the porcine C-reactive protein gene impair its expression in liver

    Get PDF
    C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-β. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence.The authors declare financial support was received for the research, authorship, and/or publication of this article. The study was funded by grants AGL2016-75432-R and PID2020-112677RB-C21 awarded by MCIN/AEI/10.13039/501100011033 and GENE-SWitCH project (https://www.gene-switch.eu), which is funded by the European Union’s Horizon 2020 Research and Innovation Programme under the grant agreement n°817998. T. Jové-Juncà was funded with an IRTA fellowship (CPI1221) and C. Hernández-Banqué was supported by a FPI grant (PRE2021-097825) granted by the Spanish Ministry of Science and Innovation. YR-C was financially supported by a Ramon y Cajal contract (RYC2019-027244-I) from the Spanish Ministry of Science and Innovation. The authors are part to a Consolidated Research Group AGAUR, with the reference 2021-SGR-01552.info:eu-repo/semantics/publishedVersio

    Genetic architecture of innate and adaptive immune cells in pigs

    Get PDF
    Pig industry is facing new challenges that make necessary to reorient breeding programs to produce more robust and resilient pig populations. The aim of the present work was to study the genetic determinism of lymphocyte subpopulations in the peripheral blood of pigs and identify genomic regions and biomarkers associated to them. For this purpose, we stained peripheral blood mononuclear cells to measure ten immune-cell-related traits including the relative abundance of different populations of lymphocytes, the proportions of CD4 + T cells and CD8 + T cells, and the ratio of CD4 + /CD8 + T cells from 391 healthy Duroc piglets aged 8 weeks. Medium to high heritabilities were observed for the ten immune-cell-related traits and significant genetic correlations were obtained between the proportion of some lymphocytes populations. A genome-wide association study pointed out 32 SNPs located at four chromosomal regions on pig chromosomes SSC3, SSC5, SSC8, and SSCX as significantly associated to T-helper cells, memory T-helper cells and γδ T cells. Several genes previously identified in human association studies for the same or related traits were located in the associated regions, and were proposed as candidate genes to explain the variation of T cell populations such as CD4, CD8A, CD8B, KLRC2, RMND5A and VPS24. The transcriptome analysis of whole blood samples from animals with extreme proportions of γδ T, T-helper and memory T-helper cells identified differentially expressed genes (CAPG, TCF7L1, KLRD1 and CD4) located into the associated regions. In addition, differentially expressed genes specific of different T cells subpopulations were identified such as SOX13 and WC1 genes for γδ T cells. Our results enhance the knowledge about the genetic control of lymphocyte traits that could be considered to optimize the induction of immune responses to vaccines against pathogens. Furthermore, they open the possibility of applying effective selection programs for improving immunocompetence in pigs and support the use of the pig as a very reliable human biomedical model

    Mutations on a conserved distal enhancer in the porcine C-reactive protein gene impair its expression in liver

    No full text
    C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-β. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence
    corecore