171 research outputs found

    Dimerization of Tetherin Is Not Essential for Its Antiviral Activity against Lassa and Marburg Viruses

    Get PDF
    Tetherin (also known as BST2, CD317 or HM1.24) has recently been reported to inhibit a wide range of viruses. However, the antiviral mechanism of action of tetherin has not been determined. Both ends of the tetherin molecule are associated with the plasma membrane and it forms a homodimer. Therefore, a model in which progeny virions are retained on the cell surface by dimer formation between tetherin molecules on the viral envelope and plasma membrane has been proposed as the antiviral mechanism of action of this molecule. To investigate this possibility, we examined the correlation between dimerization and antiviral activity of tetherin in Lassa and Marburg virus-like particle production systems using tetherin mutants deficient in dimer formation. However, the tetherin mutant with complete loss of dimerization activity still showed apparent antiviral activity, indicating that dimerization of tetherin is not essential for its antiviral activity. This suggests that tetherin retains progeny virions on the cell surface by a mechanism other than dimerization

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging

    Get PDF
    HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

    Get PDF
    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins

    Murine Leukemia Virus Spreading in Mice Impaired in the Biogenesis of Secretory Lysosomes and Ca2+-Regulated Exocytosis

    Get PDF
    Retroviruses have been observed to bud intracellularly into multivesicular bodies (MVB), in addition to the plasma membrane. Release from MVB is thought to occur by Ca(2+)-regulated fusion with the plasma membrane.To address the role of the MVB pathway in replication of the murine leukemia virus (MLV) we took advantage of mouse models for the Hermansky-Pudlak syndrome (HPS) and Griscelli syndrome. In humans, these disorders are characterized by hypopigmentation and immunological alterations that are caused by defects in the biogenesis and trafficking of MVBs and other lysosome related organelles. Neonatal mice for these disease models lacking functional AP-3, Rab27A and BLOC factors were infected with Moloney MLV and the spread of virus into bone marrow, spleen and thymus was monitored. We found a moderate reduction in MLV infection levels in most mutant mice, which differed by less than two-fold compared to wild-type mice. In vitro, MLV release form bone-marrow derived macrophages was slightly enhanced. Finally, we found no evidence for a Ca(2+)-regulated release pathway in vitro. Furthermore, MLV replication was only moderately affected in mice lacking Synaptotagmin VII, a Ca(2+)-sensor regulating lysosome fusion with the plasma membrane.Given that MLV spreading in mice depends on multiple rounds of replication even moderate reduction of virus release at the cellular level would accumulate and lead to a significant effect over time. Thus our in vivo and in vitro data collectively argue against an essential role for a MVB- and secretory lysosome-mediated pathway in the egress of MLV

    A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions

    Get PDF
    Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches

    Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction

    Get PDF
    Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions
    • …
    corecore