18 research outputs found

    Characterization of a 100 A-class LaB 6 hollow cathode for high-power Hall thrusters

    Get PDF
    International audienceThis works deals with a laboratory model 100 A-class hollow cathode with a sintered lanthanum hexaboride (LaB6) emitter for high-power Hall thrusters. The cathode has been fired up to 70 A with xenon as working gas. The cathode architecture, test setup , ignition procedure and power consumption are described first. The second part of this contribution comments on the emitter temperature, the current-voltage characteristics and the discharge modes obtained for discharge currents in the 30-70 A range and mass flow rates in the 15-30 sccm range. Finally we present electron temperatures and densities measured in the cathode plasma plume by means of incoherent Thomson scattering

    Study, characterization and enhancement of a plasma actuator : application on transition control of a Blasius boundary layer

    No full text
    Le contrôle actif d’écoulement est une voie envisagée actuellement pour améliorer les caractéristiques aérodynamiques des véhicules aériens ou terrestres. La diminution de la traînée (force opposée au mouvement) est notamment visée, ce qui permettrait de baisser la consommation en énergie entraînant ainsi une réduction des émissions polluantes. Depuis une dizaine d’années, les actionneurs plasmas sont utilisés comme dispositifs de contrôle. À Orléans, ils sont basés sur l’utilisation d’une décharge à barrière diélectrique créant à sa surface un plasma qui induit un écoulement de quelques km h-1 : le vent ionique. L’actionneur plasma est caractérisé avec l’étude des différents régimes de décharge. Celui où des arcs énergétiques apparaissent est analysé. La température de surface de l’actionneur est également étudiée en fonction de plusieurs paramètres. Elle reste inférieure à 100 °C, ce qui confirme que les effets des actionneurs plasmas sur un écoulement ne sont dus qu’au vent ionique. Une caractérisation du vent ionique permet aussi de confirmer le lien entre le vent ionique et l’extension du plasma : deux phases distinctes existent, pendant lesquelles il est créé. Le contrôle de la transition d’une couche limite de Blasius est effectué sur une géométrie de type plaque plane. En fonction de la position de l’actionneur ou de la puissance consommée, le recul, le déclenchement précoce ou le cas sans effet est obtenu. Le mécanisme d’action est identifié et est lié à une excitation de l’écoulement qui devient plus ou moins sensible aux ondes de Tollmien-Schlichting. La fréquence de fonctionnement de l’actionneur apparaît comme le paramètre principal pour ce type de contrôle. Une nouvelle géométrie d’actionneur est proposée et caractérisée. La décharge conserve des propriétés identiques au cas classique et le sondage du vent ionique par un moyen de mesure 3D permet de montrer le gain en vitesse et l’existence de structures 3D susceptibles de contrôler plus efficacement un écoulement.Active flow control is a route currently being considered to improve aerodynamic performances of vehicles (airplanes or cars). Drag reduction (force opposite to motion) is particularly concerned and provides reduction of energy consumption of vehicles what induces low exhaust gases emissions. Plasma actuators are used as control devices since a decade. In Orléans, they are based on the use of surface dielectric barrier discharge which creates plasma on its surface and induces a flow of few km h-1 : the ionic wind. The plasma actuator is characterized with the study of different discharge regimes. One in which sparks occur is analyzed. The actuator surface temperature is also studied in function of several parameters. Surface temperature remains below 100 °C what confirms effects of plasma actuators on the flow are only due to the ionic wind. Characterization of ionic wind has also confirmed the link between induced flow and plasma spread over actuator surface : two distinct phases exist where a flow is every time induced. Transition control of a Blasius boundary layer is performed on flat plate geometry. Depending on plasma actuator position or power consumption, promotion, delay or neutral case are obtained on transition location. The mechanism of action is identified and linked to an excitation of the flow that becomes more or less sensitive to Tollmien-Schlichting waves. The operating frequency also appears as the main parameter for this type of control. New actuator geometry is proposed and characterized. The discharge keeps identical properties to a classical configuration of plasma actuator. Ionic wind measurements by means of a 3D device allow us to show the gain in speed and presence of 3D structures in the induced flow topology what is more effectively to control external flows

    Etude, caractérisation et amélioration d'un actionneur plasma : application au contrôle de la transition d'une couche limite de Blasius

    No full text
    Active flow control is a route currently being considered to improve aerodynamic performances of vehicles (airplanes or cars). Drag reduction (force opposite to motion) is particularly concerned and provides reduction of energy consumption of vehicles what induces low exhaust gases emissions. Plasma actuators are used as control devices since a decade. In Orléans, they are based on the use of surface dielectric barrier discharge which creates plasma on its surface and induces a flow of few km h-1 : the ionic wind. The plasma actuator is characterized with the study of different discharge regimes. One in which sparks occur is analyzed. The actuator surface temperature is also studied in function of several parameters. Surface temperature remains below 100 °C what confirms effects of plasma actuators on the flow are only due to the ionic wind. Characterization of ionic wind has also confirmed the link between induced flow and plasma spread over actuator surface : two distinct phases exist where a flow is every time induced. Transition control of a Blasius boundary layer is performed on flat plate geometry. Depending on plasma actuator position or power consumption, promotion, delay or neutral case are obtained on transition location. The mechanism of action is identified and linked to an excitation of the flow that becomes more or less sensitive to Tollmien-Schlichting waves. The operating frequency also appears as the main parameter for this type of control. New actuator geometry is proposed and characterized. The discharge keeps identical properties to a classical configuration of plasma actuator. Ionic wind measurements by means of a 3D device allow us to show the gain in speed and presence of 3D structures in the induced flow topology what is more effectively to control external flows.Le contrôle actif d’écoulement est une voie envisagée actuellement pour améliorer les caractéristiques aérodynamiques des véhicules aériens ou terrestres. La diminution de la traînée (force opposée au mouvement) est notamment visée, ce qui permettrait de baisser la consommation en énergie entraînant ainsi une réduction des émissions polluantes. Depuis une dizaine d’années, les actionneurs plasmas sont utilisés comme dispositifs de contrôle. À Orléans, ils sont basés sur l’utilisation d’une décharge à barrière diélectrique créant à sa surface un plasma qui induit un écoulement de quelques km h-1 : le vent ionique. L’actionneur plasma est caractérisé avec l’étude des différents régimes de décharge. Celui où des arcs énergétiques apparaissent est analysé. La température de surface de l’actionneur est également étudiée en fonction de plusieurs paramètres. Elle reste inférieure à 100 °C, ce qui confirme que les effets des actionneurs plasmas sur un écoulement ne sont dus qu’au vent ionique. Une caractérisation du vent ionique permet aussi de confirmer le lien entre le vent ionique et l’extension du plasma : deux phases distinctes existent, pendant lesquelles il est créé. Le contrôle de la transition d’une couche limite de Blasius est effectué sur une géométrie de type plaque plane. En fonction de la position de l’actionneur ou de la puissance consommée, le recul, le déclenchement précoce ou le cas sans effet est obtenu. Le mécanisme d’action est identifié et est lié à une excitation de l’écoulement qui devient plus ou moins sensible aux ondes de Tollmien-Schlichting. La fréquence de fonctionnement de l’actionneur apparaît comme le paramètre principal pour ce type de contrôle. Une nouvelle géométrie d’actionneur est proposée et caractérisée. La décharge conserve des propriétés identiques au cas classique et le sondage du vent ionique par un moyen de mesure 3D permet de montrer le gain en vitesse et l’existence de structures 3D susceptibles de contrôler plus efficacement un écoulement

    Etude, caractérisation et amélioration d'un actionneur plasma (application au contrôle de la transition d'une couche limite de Blasius)

    No full text
    Le contrôle actif d écoulement est une voie envisagée actuellement pour améliorer les caractéristiques aérodynamiques des véhicules aériens ou terrestres. La diminution de la traînée (force opposée au mouvement) est notamment visée, ce qui permettrait de baisser la consommation en énergie entraînant ainsi une réduction des émissions polluantes. Depuis une dizaine d années, les actionneurs plasmas sont utilisés comme dispositifs de contrôle. À Orléans, ils sont basés sur l utilisation d une décharge à barrière diélectrique créant à sa surface un plasma qui induit un écoulement de quelques km h-1 : le vent ionique. L actionneur plasma est caractérisé avec l étude des différents régimes de décharge. Celui où des arcs énergétiques apparaissent est analysé. La température de surface de l actionneur est également étudiée en fonction de plusieurs paramètres. Elle reste inférieure à 100 C, ce qui confirme que les effets des actionneurs plasmas sur un écoulement ne sont dus qu au vent ionique. Une caractérisation du vent ionique permet aussi de confirmer le lien entre le vent ionique et l extension du plasma : deux phases distinctes existent, pendant lesquelles il est créé. Le contrôle de la transition d une couche limite de Blasius est effectué sur une géométrie de type plaque plane. En fonction de la position de l actionneur ou de la puissance consommée, le recul, le déclenchement précoce ou le cas sans effet est obtenu. Le mécanisme d action est identifié et est lié à une excitation de l écoulement qui devient plus ou moins sensible aux ondes de Tollmien-Schlichting. La fréquence de fonctionnement de l actionneur apparaît comme le paramètre principal pour ce type de contrôle. Une nouvelle géométrie d actionneur est proposée et caractérisée. La décharge conserve des propriétés identiques au cas classique et le sondage du vent ionique par un moyen de mesure 3D permet de montrer le gain en vitesse et l existence de structures 3D susceptibles de contrôler plus efficacement un écoulement.Active flow control is a route currently being considered to improve aerodynamic performances of vehicles (airplanes or cars). Drag reduction (force opposite to motion) is particularly concerned and provides reduction of energy consumption of vehicles what induces low exhaust gases emissions. Plasma actuators are used as control devices since a decade. In Orléans, they are based on the use of surface dielectric barrier discharge which creates plasma on its surface and induces a flow of few km h-1 : the ionic wind. The plasma actuator is characterized with the study of different discharge regimes. One in which sparks occur is analyzed. The actuator surface temperature is also studied in function of several parameters. Surface temperature remains below 100 C what confirms effects of plasma actuators on the flow are only due to the ionic wind. Characterization of ionic wind has also confirmed the link between induced flow and plasma spread over actuator surface : two distinct phases exist where a flow is every time induced. Transition control of a Blasius boundary layer is performed on flat plate geometry. Depending on plasma actuator position or power consumption, promotion, delay or neutral case are obtained on transition location. The mechanism of action is identified and linked to an excitation of the flow that becomes more or less sensitive to Tollmien-Schlichting waves. The operating frequency also appears as the main parameter for this type of control. New actuator geometry is proposed and characterized. The discharge keeps identical properties to a classical configuration of plasma actuator. Ionic wind measurements by means of a 3D device allow us to show the gain in speed and presence of 3D structures in the induced flow topology what is more effectively to control external flows.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF

    Modification of the shock wave shape of a supersonic low Reynolds number flow field around a cylinder by a glow discharge in air

    No full text
    Oral presentationInternational audienceThis paper describes investigations focused on the shock wave modification induced by a plasma actuator flush mounted on a cylinder in rarefied flow regime. The experimental measurements were carried out in a supersonic low-density wind tunnel and the numerical investigation used a 2D fully compressible Navier Stokes simulation. Experimental observations showed the modification of the shock wave when the discharge was switched on. The numerical simulations show that this modification cannot be reproduced correctly by thermal effects. A theoretical approach was then proposed, in which the shock stand-off distance is written as a function of the ionization degree of the plasma. This approach was confirmed experimentally by measuring electronic properties of the plasma

    Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    No full text
    International audienceThis paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle

    Anode position influence on discharge modes of a LaB 6 cathode in diode configuration

    No full text
    International audienceA laboratory model of a 5 A-class cathode was experimentally studied in diode configuration with a disk anode. The core of the cathode is a flat disk lanthanum hexaboride (LaB6) insert. Electron emission is achieved using a heating element in direct contact with the insert. The paper reports the characterization of the LaB6 cathode operated at xenon mass flow rates between 0.4 and 1.0 mg s−1 with discharge currents ranging from 2 A to 12 A. Apart from the operating envelope and discharge mode (spot versus plume) differentiation, the influence of anode position on cathode discharge mode was studied. For this purpose, the cathode was operated at 4 A and 0.6 mg s−1 and at 10 A and 0.6 mg s−1, while the cathode-anode gap was increased from 20 mm to 70 mm. Both electrical and plasma parameters were collected and analyzed in order to highlight the main changes in cathode discharge when the cathode-anode gap was increased. Particular attention was paid to the identification of the discharge mode and mode transition based on spectral analysis of discharge current waveforms. It was demonstrated that an increase in the cathode-anode gap induces the discharge mode transition from spot mode, corresponding to lower gap values, to plume mode, corresponding to higher gap values. Changes in plasma property were also noticed, the cathode-anode gap increase inducing lower plasma density and higher electron temperature in the cathode plume

    Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

    No full text
    International audienceThis paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed
    corecore