27 research outputs found

    Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>7B2 is a regulator/activator of the prohormone convertase 2 which is involved in the processing of numerous neuropeptides, including insulin, glucagon and pro-opiomelanocortin. We have previously described a suggestive genetic linkage peak with childhood obesity on chr15q12-q14, where the 7B2 encoding gene, <it>SGNE1 </it>is located. The aim of this study is to analyze associations of <it>SGNE1 </it>genetic variation with obesity and metabolism related quantitative traits.</p> <p>Methods</p> <p>We screened <it>SGNE1 </it>for genetic variants in obese children and genotyped 12 frequent single nucleotide polymorphisms (SNPs). Case control analyses were performed in 1,229 obese (534 children and 695 adults), 1,535 individuals with type 2 diabetes and 1,363 controls, all French Caucasians. We also studied 4,922 participants from the D.E.S.I.R prospective population-based cohort.</p> <p>Results</p> <p>We did not find any association between <it>SGNE1 </it>SNPs and childhood or adult obesity. However, the 5' region SNP -1,701A>G associated with higher area under glucose curve after oral glucose tolerance test (p = 0.0005), higher HOMA-IR (p = 0.005) and lower insulinogenic index (p = 0.0003) in obese children. Similar trends were found in obese adults. SNP -1,701A>G did not associate with risk of T2D but tends to associate with incidence of type 2 diabetes (HR = 0.75 95%CI [0.55–1.01]; p = 0.06) in the prospective cohort.</p> <p>Conclusion</p> <p><it>SGNE1 </it>genetic variation does not contribute to obesity and common forms of T2D but may worsen glucose intolerance and insulin resistance, especially in the background of severe and early onset obesity. Further molecular studies are required to understand the molecular bases involved in this process.</p

    Natural history of KBG syndrome in a large European cohort

    Get PDF
    KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.</p

    In-depth phenotyping of a Donnai-Barrow patient helps clarify proximal tubule dysfunction.

    Full text link
    BACKGROUND: The megalin/cubilin/amnionless complex is essential for albumin and low molecular weight (LMW) protein reabsorption by renal proximal tubules (PT). Mutations of the LRP2 gene encoding megalin cause autosomal recessive Donnai-Barrow/facio-oculo-acoustico-renal syndrome (DB/FOAR), which is characterized by LMW proteinuria. The pathophysiology of DB/FOAR-associated PT dysfunction remains unclear. CLINICAL CASE: A 3-year-old girl presented with growth retardation and proteinuria. Clinical examination was unremarkable, except for a still-opened anterior fontanel and myopia. Psychomotor development was delayed. At 6, she developed sensorineural hearing loss. Hypertelorism was noted when she turned 12. Blood analyses, including renal function parameters, were normal. Urine sediment was bland. Proteinuria was significant and included albumin and LMW proteins. Immunoblotting analyses detected cubilin and type 3 carbonic anhydrase (CA3) in the urine. Renal ultrasound was unremarkable. Optical examination of a renal biopsy did not disclose any tubular or glomerular abnormality. Electron microscopy revealed that PT apical endocytic apparatus was significantly less developed. Immunostaining for megalin showed a faint signal in PT cytosol contrasting with the distribution of cubilin at the apical membrane. The diagnostic procedure led to identifying two mutations of the LRP2 gene. CONCLUSIONS: The functional loss of megalin in DB/FOAR causes PT dysfunction characterized by increased urinary shedding of CA3 and cubilin

    Estimating urine albumin to creatinine ratio from protein to creatinine ratio using same day measurement: validation of equations.

    Full text link
    peer reviewed[en] OBJECTIVES: Severity of chronic kidney disease is defined by glomerular filtration rate (GFR) and albuminuria (ACR) by the KDIGO and are related to cardiovascular outcomes and end-stage-kidney-failure. However, proteinuria (PCR) is more often available than ACR in records. Recently, equations were developed to estimate ACR from PCR. We investigated their performances in our population. METHODS: In the academic medical hospital of Liège, we retrospectively analysed same day measurement of ACR and PCR and staged them according to the KDIGO A1-A2-A3 categories. Analyser Roche Cobas (R) gathered 2,633 urinalysis (May 2018-May 2019) and analyser Abbott Alinity (A) 2,386 urinalysis (May 2019-March 2020). We compared the KDIGO staging of mACR and eACR obtained from Weaver's and Sumida's equations. RESULTS: Median age was 63 [52;71]/64 [53;72] years old, 43/42% were female; 78/74% had diabetes; proportion of mACR-A1 was 65.6%/64.2%, A2 was 25.5%/25.5% and A3 was 8.8%/10.3% (Method R/A, respectively). Both equations gave similar distribution of KDIGO staging of eACR. Overall agreements were higher than 88% regardless of the analyser or of the equation. Performances in between equations were equivalent according to the multi-level AUC (multinomial logistic regression model). CONCLUSIONS: Good concordance was observed between mACR and eACR regardless of the equation or of the analyser. No patient with an A3-measured ACR was estimated within the KDIGO A1 category. Though ACR should be measured when clinically needed, it may be reasonably estimated from the PCR through these equations, for epidemiologic retrospective studies or research purposes

    Clinical Genetics of Prolidase Deficiency: An Updated Review

    No full text
    International audienceProlidase is a ubiquitous enzyme that plays a major role in the metabolism of proline-rich proteins. Prolidase deficiency is a rare autosomal recessive inborn metabolic and multisystemic disease, characterized by a protean association of symptoms, namely intellectual disability, recurrent infections, splenomegaly, skin lesions, auto-immune disorders and cytopenia. To our knowledge, no published review has assembled the different clinical data and research studies over prolidase deficiency. The aim of this study is to summarize the actual state of the art from the descriptions of all the patients with a molecular diagnosis of prolidase deficiency reported to date regarding the clinical, biological, histopathological features, therapeutic options and functional studies

    Kidney injury in COVID-19

    Full text link
    peer reviewedLe virus SARS-CoV-2 provoque un syndrome de détresse respiratoire aiguë, le symptôme principal de l’infection COVID-19 (pour «COronaVIrus Disease 2019»). Cette maladie infectieuse provoque une pandémie de gravité sanitaire et socio-économique majeure depuis décembre 2019. La cible principale du SARS-CoV-2 serait l’alvéole pulmonaire. Néanmoins, ce coronavirus est capable d’affecter directement ou indirectement d’autres organes, y compris les reins. Nous résumons ici la physiopathologie présumée de l’atteinte rénale de la COVID-19. L’incidence de l’insuffisance rénale aiguë varie entre 0,5 à 22 % de tous les patients infectés par le SARS-CoV-2. La nécessité d’une épuration extra-rénale est rapportée chez 5-9 % des patients pris en charge aux soins intensifs. L’analyse histologique de biopsies rénales montre, principalement, une nécrose tubulaire aiguë de sévérité variable, ainsi qu’une congestion des capillaires glomérulaires et péri-tubulaires. Une endothélite a parfois été décrite. L’atteinte inflammatoire du glomérule reste débattue. Les conséquences à moyen/long termes de la néphropathie COVID-19 sont inconnues et mériteront un suivi étroit.The SARS-CoV-2 virus causes a respiratory distress syndrome, the main symptom of COVID-19 (for “COronaVIrus Disease 2019”). This infectious disease has been causing a major health and socio-economic pandemic since December 2019. The pulmonary alveolus is regarded as the main target of SARS-CoV-2. However, this coronavirus is capable of directly or indirectly affecting other organs, including the kidneys. Here, we summarize the presumed pathophysiology of COVID-19 renal disease. The incidence of acute kidney injury ranges from 0,5 to 22 % of all patients infected with SARS-CoV-2. The need for renal replacement therapy is reported in 5-9 % of patients in intensive care. Histological analysis of renal biopsies mainly shows acute tubular necrosis of varying severity, as well as the congestion of glomerular and peri-tubular capillaries. Endothelitis has been described in few cases. Evidence for a factual inflammation of the glomerulus remains controversial. The medium/long term consequences of COVID-19 nephropathy are unknown and will deserve a tight follow-up

    Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content.

    No full text
    Megalin/LRP2 is a major receptor supporting apical endocytosis in kidney proximal tubular cells. We have previously reported that kidney-specific perinatal ablation of the megalin gene in cystinotic mice, a model of nephropathic cystinosis, essentially blocks renal cystine accumulation and partially preserves kidney tissue integrity. Here, we examined whether inhibition of the megalin pathway in adult cystinotic mice by dietary supplementation (5x-fold vs control regular diet) with the dibasic amino-acids (dAAs), lysine or arginine, both of which are used to treat patients with other rare metabolic disorders, could also decrease renal cystine accumulation and protect cystinotic kidneys. Using surface plasmon resonance, we first showed that both dAAs compete for protein ligand binding to immobilized megalin in a concentration-dependent manner, with identical inhibition curves by L- and D-stereoisomers. In cystinotic mice, 2-month diets with 5x-L-lysine and 5x-L-arginine were overall well tolerated, while 5x-D-lysine induced strong polyuria but no weight loss. All diets induced a marked increase of dAA urinary excretion, most prominent under 5x-D-lysine, without sign of kidney insufficiency. Renal cystine accumulation was slowed down approx. twofold by L-dAAs, and totally suppressed by D-lysine. We conclude that prolonged dietary manipulation of the megalin pathway in kidneys is feasible, tolerable and can be effective in vivo

    Proteinuria in COVID‑19: prevalence, characterization and prognostic role

    Full text link
    Abstract Background Proteinuria has been commonly reported in patients with COVID-19. However, only dipstick tests have been frequently used thus far. Here, the quantifcation and characterization of proteinuria were investigated and their association with mortality was assessed. Methods This retrospective, observational, single center study included 153 patients, hospitalized with COVID-19 between March 28th and April 30th, 2020, in whom total proteinuria and urinary α1-microglobulin (a marker of tubular injury) were measured. Association with mortality was evaluated, with a follow-up until May 7th, 2020. Results According to the Kidney Disease Improving Global Outcomes staging, 14% (n=21) of the patients had category 1 proteinuria (<150 mg/g of urine creatinine), 42% (n=64) had category 2 (between 150 and 500 mg/g) and 44% (n=68) had category 3 proteinuria (over 500 mg/g). Urine α1-microglobulin concentration was higher than 15 mg/g in 89% of patients. After a median follow-up of 27 [14;30] days, the mortality rate reached 18%. Total proteinuria and urinary α1-microglobulin were associated with mortality in unadjusted and adjusted models. This association was stronger in subgroups of patients with normal renal function and without a urinary catheter. Conclusions Proteinuria is frequent in patients with COVID-19. Its characterization suggests a tubular origin, with increased urinary α1-microglobulin. Tubular proteinuria was associated with mortality in COVID-19 in our restropective, observational study
    corecore