28 research outputs found

    Biogeochemistry of Trace Elements in the Mixing Zone of the Mississippi and Atchafalaya Rivers and Chemical Distributions as Affected by the Deepwater Horizon Blowout

    Get PDF
    Selected trace elements (TEs), dissolved organic carbon, and nutrients were studied in Louisiana Shelf waters including the Mississippi (MR) and Atchafalaya (AR) River plumes during periods of high, intermediate, and low river discharges. Seasonal variations in TEs were observed at low salinity, reflecting seasonal changes in the river water endmembers. Shelf surface water dissolved Mo, Cs, U, Ni, and Cu showed conservative behavior with minor scattering in some high salinity waters. Based on associated mixing experiments, nutrient and chlorophyll distributions, as well as surface-bottom concentration contrasts, the non-conservative behavior of TEs was variously related to colloidal flocculation (Fe, Cr), biological activity (Fe, Mn), desorption (Ba, Co, Mn), photochemical reaction (Cr) and benthic mobilization (Ba, Co, Cu, Ni, Mn). These processes resulted in seasonal variation of the Ba-salinity relationship in the shelf surface waters, which may lead to considerable uncertainty in paleo-freshwater input estimations. In bottom waters, TEs were either negatively or positively correlated with dissolved oxygen, suggestive of sedimentary diffusion, particle dissolution, or adsorptive removal onto particles under reducing conditions. During bottom water hypoxia, the eberincreases of dissolved Co, Fe and Mn in some high salinity surface waters were observed and were due to episodic vertical mixing. Different distributions of the studied TEs were observed in the mixing zones of the MR and AR plumes, probably due to the different biogeochemical characteristics of the two river plumes. Additional inputs from the Red River and wetland waters in the AR Basin resulted in different river concentrations and consequently led to a considerable AR contribution for some TEs to the shelf, exceeding the AR hydrological contribution of the shelf. The AR plays a critical role in TE distributions of the Louisiana Shelf waters because it can be the dominant freshwater source to the shelf during summertime. In addition to the Louisiana Shelf work, the impact of the Deepwater Horizon oil spill on trace element distributions was investigated. An examination of profiles, ancillary data, and oil/dispersant leaching experiments suggests that subsurface concentration changes were related to inputs from crude oil (Co), drilling mud (Ba), and bottom sediment resuspension (Fe). Biological removal of Fe during oil/gas degradation may have been a factor, as well

    Nutrient Depletion as a Proxy for Microbial Growth in Deepwater Horizon Subsurface Oil/Gas Plumes

    Get PDF
    The Deepwater Horizon accident resulted in a substantial uncontrolled hydrocarbon release to the northern Gulf of Mexico, much of which was entrained in deep submerged plumes. While bio-degradation of the hydrocarbons has been inferred from microbial biomass and genetics, the amount of conversion of oil and gas carbon to biomass remains uncertain having only been estimated in modeling studies. Here we examine correlated depletions of nitrate, phosphate and oxygen in the submerged plumes and conclude that a substantial portion of hydrocarbons in these plumes was converted to biomass (0.8-2 x 10(10) mol C). This contrasts with nutrient-limited surface waters where other work has suggested hydrocarbon-induced microbial growth to have been minimal. Our results suggest the need for better monitoring of changes in nutrients as well as study of nutrient recycling in similar future hydrocarbon releases

    Factors controlling the distribution of dissolved organic carbon and nitrogen in the coastal waters off Jeju Island

    Get PDF
    The composition of dissolved organic matter (DOM) in the coastal waters off Jeju Island, Korea, originates from a complex mixture of organic sources. This study examined the dynamics and sources of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the coastal waters off Jeju Island. Seasonal variation in the DOC and DON concentrations was observed, with significantly higher levels during summer (DOC: 82 ± 15 ”M and DON: 6.8 ± 2.0 ”M) than during the other seasons. In 2017, the Kuroshio Intermediate Water had a greater impact on the coastal waters off Jeju Island during winter (79%) and spring (69%) than during the other seasons, while the Changjiang Diluted Water (CDW) (12%) and the Kuroshio Surface Water (47%) had a stronger impact during summer and the Yellow Sea Cold Water (10%) had a stronger impact during autumn. Although water mass analysis provides valuable insights, certain aspects of the DOM distribution in coastal seawater remain unexplained. During summer, while the mixing of the CDW influenced the concentrations of DOC and DON, a distinct pulse in these concentrations was observed within a specific salinity range, suggesting microbial activity as a source. The relationship between dissolved inorganic nitrogen (DIN) and salinity also exhibited the opposite trend to that between DON and salinity, indicating the conversion of DON into DIN through microbial activity. These findings suggest that microbial activity plays a key role in the observed DOM pulse, transforming particulate organic matter into DOM and then converting it into DIN during the long transportation from Changjiang River to Jeju Island. This organic matter cycle could thus serve as a source of DIN in oligotrophic regions. However, further research on the sources and distribution of organic matter using biogeochemical parameters is required to gain a better understanding of the intricate processes involved

    Estimating the impact of seep methane oxidation on ocean pH and dissolved inorganic radiocarbon along the US Mid-Atlantic Bight

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.2021-06-2

    Winter weather and lake-watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of ice-covered lakes

    Get PDF
    While decreasing occurrence and duration of lake ice cover is well-documented, biogeochemical dynamics in frozen lakes remain poorly understood. Here, we interpret winter physical and biogeochemical time series from eutrophic Missisquoi Bay (MB) and hyper-eutrophic Shelburne Pond (SP) to describe variable drivers of under ice biogeochemistry in systems of fundamentally different lake-watershed physical configurations (lake area, lake : watershed area). The continuous cold of the 2015 winter drove the MB sediment-water interface to the most severe and persistent suboxic state ever documented at this site, promoting the depletion of redox-sensitive phases in sediments, and an expanding zone of bottom water enriched in reactive species of Mn, Fe, and P. In this context, lake sediment and water column inventories of reactive chemical species were sensitive to the severity and persistence of subfreezing temperatures. During thaws, event provenance and severity impact lake thermal structure and mixing, water column enrichment in P and Fe, and thaw capability to suppress redox front position and internal chemical loading. Nearly identical winter weather manifest differently in nearby SP, where the small surface and watershed areas promoted a warmer, less stratified water column and active phytoplankton populations, impacting biogeochemical dynamics. In SP, Fe and P behavior under ice were decoupled due to active biological cycling, and thaw impacts were different in distribution and composition due to SP's physical structure and related antecedent conditions. We find that under ice biogeochemistry is highly dynamic in both time and space and sensitive to a variety of drivers impacted by climate change

    Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 1—Chemical Kinetics

    Get PDF
    Microbial aerobic oxidation is known to be a significant sink of marine methane (CH4), contributing to the relatively minor atmospheric release of this greenhouse gas over vast stretches of the ocean. However, the chemical kinetics of aerobic CH4 oxidation are not well established, making it difficult to predict and assess the extent that CH4 is oxidized in seawater following seafloor release. Here we investigate the kinetics of aerobic CH4 oxidation using mesocosm incubations of fresh seawater samples collected from seep fields in Hudson Canyon, U.S. Atlantic Margin and MC118, Gulf of Mexico to gain a fundamental chemical understanding of this CH4 sink. The goals of this investigation were to determine the response or lag time following CH4 release until more rapid oxidation begins, the reaction order, and the stoichiometry of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace metals) during CH4 oxidation. The results for both Hudson Canyon and MC118 environments show that CH4 oxidation rates sharply increased within less than one month following the CH4 inoculation of seawater. However, the exact temporal characteristics of this more rapid CH4 oxidation varied based on location, possibly dependent on the local circulation and biogeochemical conditions at the point of seawater collection. The data further suggest that methane oxidation behaves as a first‐order kinetic process and that the reaction rate constant remains constant once rapid CH4 oxidation begins

    Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 2—Isotopic Kinetics

    Get PDF
    During aerobic oxidation of methane (CH4) in seawater, a process which mitigates atmospheric emissions, the 12C‐isotopologue reacts with a slightly greater rate constant than the 13C‐isotopologue, leaving the residual CH4 isotopically fractionated. Prior studies have attempted to exploit this systematic isotopic fractionation from methane oxidation to quantify the extent that a CH4 pool has been oxidized in seawater. However, cultivation‐based studies have suggested that isotopic fractionation fundamentally changes as a microbial population blooms in response to an influx of reactive substrates. Using a systematic mesocosm incubation study with recently collected seawater, here we investigate the fundamental isotopic kinetics of aerobic CH4 oxidation during a microbial bloom. As detailed in a companion paper, seawater samples were collected from seep fields in Hudson Canyon, U.S. Atlantic Margin, and atop Woolsey Mound (also known as Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of Mexico, and used in these investigations. The results from both Hudson Canyon and MC118 show that in these natural environments isotopic fraction for CH4 oxidation follows a first‐order kinetic process. The results also show that the isotopic fractionation factor remains constant during this methanotrophic bloom once rapid CH4 oxidation begins and that the magnitude of the fractionation factor appears correlated with the first‐order reaction rate constant. These findings greatly simplify the use of natural stable isotope changes in CH4 to assess the extent that CH4 is oxidized in seawater following seafloor release

    Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site

    Get PDF
    Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m, with highest intensities close to the wellhead and decreasing intensities with increasing distance from the wellhead. Gas chromatography/mass spectrometry (GC/MS) analyses of water samples coinciding with the deep fluorescence and beam attenuation anomalies confirmed the presence of polycyclic aromatic hydrocarbons (PAH) at concentrations reaching 189 mu g L(-1) (ppb). Subsurface exposure to PAH at levels considered to be toxic to marine organisms would have occurred in discrete depth layers between 1000 and 1400 m in the region southwest of the wellhead site and extending at least as far as 13 km. Citation: Diercks, A.-R., et al. (2010), Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site, Geophys. Res. Lett., 37, L20602, doi: 10.1029/2010GL045046

    Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site

    Get PDF
    Here, we report the initial observations of distributions of polycyclic aromatic hydrocarbons (PAH) in subsurface waters near the Deepwater Horizon oil well site (also referred to as the Macondo, Mississippi Canyon Block 252 or MC252 well). Profiles of in situ fluorescence and beam attenuation conducted during 9-16 May 2010 were characterized by distinct peaks at depths greater than 1000 m, with highest intensities close to the wellhead and decreasing intensities with increasing distance from the wellhead. Gas chromatography/mass spectrometry (GC/MS) analyses of water samples coinciding with the deep fluorescence and beam attenuation anomalies confirmed the presence of polycyclic aromatic hydrocarbons (PAH) at concentrations reaching 189 ÎŒg L−1 (ppb). Subsurface exposure to PAH at levels considered to be toxic to marine organisms would have occurred in discrete depth layers between 1000 and 1400 m in the region southwest of the wellhead site and extending at least as far as 13 km

    Analyses of Water Samples From the Deepwater Horizon Oil Spill: Documentation of the Subsurface Plume

    Get PDF
    Surface and subsurface water samples were collected in the vicinity of the Deepwater Horizon (DWH) wellhead in the Gulf of Mexico. Samples were extracted with dichloromethane and analyzed for a toxic component, polycyclic aromatic hydrocarbons (PAHs), using total scanning fluorescence (TSF) and by gas chromatography/mass spectrometry (GC/MS). An aliquot of fresh, floating oil from a surface sample was used as a DWH oil reference standard. Twelve of 19 samples collected from 24 May 2010 to 6 June 2010 on the R/V Walton Smith cruise contained TSF maximum intensities above background (0.7 ”g L À1 based on 1 L sample size). These 12 samples had total petroleum hydrocarbon (TPH) concentrations as measured by quantitative gas chromatography flame ionization detector (FID) ranging from 2 to 442 ”g L À1 . Quantitative GC/MS analysis of these 12 samples resulted in total PAH concentrations ranging from 0.01 to 59 ”g L À1 . Low molecular weight, more water-soluble naphthalene and alkylated naphthalene dominated the PAH composition patterns for 11 of the 12 water samples. Sample 12 exhibited substantially reduced concentrations of naphthalenes relative to other PAH compounds. The total PAH concentrations were positively correlated (R 2 = 0.80) with the TSF maximum intensity (MI). TSF is a simple, rapid technique providing an accurate prediction of the amount of PAH present in a sample. TSFderived estimates of the relative contribution of PAH present in the oil provided evidence that PAH represented~10% of the higher molecular weight TPH. The subsurface oil plume was confirmed by the analyses of discrete water samples for TSF, TPH, and PAH
    corecore