300 research outputs found

    Thermal radiation and near-field energy density of thin metallic films

    Full text link
    We study the properties of thermal radiation emitted by a thin dielectric slab, employing the framework of macroscopic fluctuational electrodynamics. Particular emphasis is given to the analytical construction of the required dyadic Green's functions. Based on these, general expressions are derived for both the system's Poynting vector, describing the intensity of propagating radiation, and its energy density, containing contributions from non-propagating modes which dominate the near-field regime. An extensive discussion is then given for thin metal films. It is shown that the radiative intensity is maximized for a certain film thickness, due to Fabry-Perot-like multiple reflections inside the film. The dependence of the near-field energy density on the distance from the film's surface is governed by an interplay of several length scales, and characterized by different exponents in different regimes. In particular, this energy density remains finite even for arbitrarily thin films. This unexpected feature is associated with the film's low-frequency surface plasmon polariton. Our results also serve as reference for current near-field experiments which search for deviations from the macroscopic approach

    Casimir force between designed materials: what is possible and what not

    Full text link
    We establish strict upper limits for the Casimir interaction between multilayered structures of arbitrary dielectric or diamagnetic materials. We discuss the appearance of different power laws due to frequency-dependent material constants. Simple analytical expressions are in good agreement with numerical calculations based on Lifshitz theory. We discuss the improvements required for current (meta) materials to achieve a repulsive Casimir force.Comment: 9 pages, 4 figures, graphicx, v4: Europhysics Letters, in pres

    Monte Carlo transient phonons transport in silicon and germanium at nanoscales

    Full text link
    Heat transport at nanoscales in semiconductors is investigated with a statistical method. The Boltzmann Transport Equation (BTE) which characterize phonons motion and interaction within the crystal lattice has been simulated with a Monte Carlo technique. Our model takes into account media frequency properties through the dispersion curves for longitudinal and transverse acoustic branches. The BTE collisional term involving phonons scattering processes is simulated with the Relaxation Times Approximation theory. A new distribution function accounting for the collisional processes has been developed in order to respect energy conservation during phonons scattering events. This non deterministic approach provides satisfactory results in what concerns phonons transport in both ballistic and diffusion regimes. The simulation code has been tested with silicon and germanium thin films; temperature propagation within samples is presented and compared to analytical solutions (in the diffusion regime). The two materials bulk thermal conductivity is retrieved for temperature ranging between 100 K and 500 K. Heat transfer within a plane wall with a large thermal gradient (250 K-500 K) is proposed in order to expose the model ability to simulate conductivity thermal dependence on heat exchange at nanoscales. Finally, size effects and validity of heat conduction law are investigated for several slab thicknesses

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    The Chemistry of Interstellar OH+, H2O+, and H3O+: Inferring the Cosmic Ray Ionization Rates from Observations of Molecular Ions

    Full text link
    We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({\chi}<~ 1000; {\chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {\zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {\zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {\zeta}(crp)/n, {\chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {\zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and \chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N

    On the use of fractional Brownian motion simulations to determine the 3D statistical properties of interstellar gas

    Full text link
    Based on fractional Brownian motion (fBm) simulations of 3D gas density and velocity fields, we present a study of the statistical properties of spectro-imagery observations (channel maps, integrated emission, and line centroid velocity) in the case of an optically thin medium at various temperatures. The power spectral index gamma_W of the integrated emission is identified with that of the 3D density field (gamma_n) provided the medium's depth is at least of the order of the largest transverse scale in the image, and the power spectrum of the centroid velocity map is found to have the same index gamma_C as that of the velocity field (gamma_v). Further tests with non-fBm density and velocity fields show that this last result holds, and is not modified either by the effects of density-velocity correlations. A comparison is made with the theoretical predictions of Lazarian & Pogosyan (2000).Comment: 28 pages, 14 figures, accepted for publication in ApJ. For preprint with higher-resolution figures, see http://www.cita.utoronto.ca/~mamd/miville_fbm2003.pd

    Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces

    Full text link
    We study the heat transfer between two parallel metallic semi-infinite media with a gap in the nanometer-scale range. We show that the near-field radiative heat flux saturates at distances smaller than the metal skin depth when using a local dielectric constant and investigate the origin of this effect. The effect of non-local corrections is analysed using the Lindhard-Mermin and Boltzmann-Mermin models. We find that local and non-local models yield the same heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation observed in a recent experiment as a manifestation of the skin depth and show that heat is mainly dissipated by eddy currents in metallic bodies.Comment: Version without figures (8 figures in the complete version

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons

    Get PDF
    With the high-resolution spectroscopy now available in the optical and satellite UV, it is possible to determine the neutral/ionized column density ratios for several different elements in a single cloud. Assuming ionization equilibrium for each element, one can make several independent determinations of the electron density. For the clouds for which such an analysis has been carried out, these different estimates disagree by large factors, suggesting that some process (or processes) besides photoionization and radiative recombination might play an important role in the ionization balance. One candidate process is collisions of ions with dust grains. Making use of recent work quantifying the abundances of polycyclic aromatic hydrocarbon molecules and other grains in the interstellar medium, as well as recent models for grain charging, we estimate the grain-assisted ion recombination rates for several astrophysically important elements. We find that these rates are comparable to the rates for radiative recombination for conditions typical of the cold neutral medium. Including grain-assisted ion recombination in the ionization equilibrium analysis leads to increased consistency in the various electron density estimates for the gas along the line of sight to 23 Orionis. However, not all of the discrepancies can be eliminated in this way; we speculate on some other processes that might play a role. We also note that grain-assisted recombination of H+ and He+ leads to significantly lower electron fractions than usually assumed for the cold neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty); submitted to ApJ; corrected typo

    Detection of interstellar CH_3

    Get PDF
    Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it Infrared Space Observatory} (ISO) have led to the first detection of the methyl radical CH3{\rm CH_3} in the interstellar medium. The ν2\nu_2 QQ-branch at 16.5 μ\mum and the RR(0) line at 16.0 μ\mum have been unambiguously detected toward the Galactic center SgrA^*. The analysis of the measured bands gives a column density of (8.0±\pm2.4)×1014\times10^{14} cm2^{-2} and an excitation temperature of (17±2)(17\pm 2) K. Gaseous CO{\rm CO} at a similarly low excitation temperature and C2H2{\rm C_2H_2} are detected for the same line of sight. Using constraints on the H2{\rm H_2} column density obtained from C18O{\rm C^{18}O} and visual extinction, the inferred CH3{\rm CH_3} abundance is (1.3+2.20.7)×108(1.3{{+2.2}\atop{-0.7}}) \times 10^{-8}. The chemically related CH4{\rm CH_4} molecule is not detected, but the pure rotational lines of CH{\rm CH} are seen with the Long Wavelength Spectrometer (LWS). The absolute abundances and the CH3/CH4{\rm CH_3/CH_4} and CH3/CH{\rm CH_3/CH} ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out and reactions of H{\rm H} with polycyclic aromatic hydrocarbons and solid aliphatic material are included.Comment: 2 figures. ApJL, Accepte
    corecore