58 research outputs found

    DĂ©tection automatique des ƓdĂšmes aigus pulmonaires de surcharge post-transfusionnels dans les dossiers patients informatisĂ©s

    Get PDF
    International audienceTransfusion-associated circulatory overload (TACO) is a serious adverse event following the transfusion of a labile blood product. Although these events must be reported, under-reporting is common. In this article, we describe the implementation of a semi-automated surveillance system based on automatic language processing of textual data from electronic health records. An algorithm detects the concepts of transfusion and pulmonary edema in the same sentence and generates an alert transmitted to the hemovigilance department. Several unreported cases of TACO were detected by this approach and confirmed after manual validation. This innovative approach is likely to help hemovigilance units detect and monitor post-transfusion adverse events.Les oedĂšmes aigus pulmonaires de surcharge post-transfusionnels (TACO) sont des Ă©vĂšnements indĂ©sirables graves consĂ©cutifs Ă  la transfusion d'un produit sanguin labile. Bien que ces Ă©vĂšnements doivent ĂȘtre signalĂ©s, les sous-dĂ©clarations sont frĂ©quentes. Dans cet article, nous dĂ©crivons l'implĂ©mentation d'un systĂšme de surveillance semi-automatisĂ© basĂ© sur le traitement automatique de la langue des donnĂ©es textuelles des dossiers patients informatisĂ©s. Un algorithme dĂ©tecte les concepts de transfusion et d'oedĂšme pulmonaire dans une mĂȘme phrase et gĂ©nĂšre une alerte transmise aux hĂ©movigilants. Plusieurs cas de TACO non signalĂ©s ont Ă©tĂ© dĂ©tectĂ©s par cette approche puis confirmĂ©s aprĂšs enquĂȘte d'hĂ©movigilance. Cette approche innovante est susceptible d'aider les unitĂ©s d'hĂ©movigilance Ă  dĂ©tecter et surveiller des Ă©vĂšnements indĂ©sirables post-transfusionnels dans les Ă©tablissements

    Stud Health Technol Inform

    Get PDF
    Clinical information in electronic health records (EHRs) is mostly unstructured. With the ever-increasing amount of information in patients' EHRs, manual extraction of clinical information for data reuse can be tedious and time-consuming without dedicated tools. In this paper, we present SmartCRF, a prototype to visualize, search and ease the extraction and structuration of information from EHRs stored in an i2b2 data warehouse

    JCO Clin Cancer Inform

    Get PDF
    PURPOSE: Many institutions throughout the world have launched precision medicine initiatives in oncology, and a large amount of clinical and genomic data is being produced. Although there have been attempts at data sharing with the community, initiatives are still limited. In this context, a French task force composed of Integrated Cancer Research Sites (SIRICs), comprehensive cancer centers from the Unicancer network (one of Europe's largest cancer research organization), and university hospitals launched an initiative to improve and accelerate retrospective and prospective clinical and genomic data sharing in oncology. MATERIALS AND METHODS: For 5 years, the OSIRIS group has worked on structuring data and identifying technical solutions for collecting and sharing them. The group used a multidisciplinary approach that included weekly scientific and technical meetings over several months to foster a national consensus on a minimal data set. RESULTS: The resulting OSIRIS set and event-based data model, which is able to capture the disease course, was built with 67 clinical and 65 omics items. The group made it compatible with the HL7 Fast Healthcare Interoperability Resources (FHIR) format to maximize interoperability. The OSIRIS set was reviewed, approved by a National Plan Strategic Committee, and freely released to the community. A proof-of-concept study was carried out to put the OSIRIS set and Common Data Model into practice using a cohort of 300 patients. CONCLUSION: Using a national and bottom-up approach, the OSIRIS group has defined a model including a minimal set of clinical and genomic data that can be used to accelerate data sharing produced in oncology. The model relies on clear and formally defined terminologies and, as such, may also benefit the larger international community

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7–10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January-September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7-7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7-10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19-25%), cerebrovascular diseases (24%, 13-35%), nontraumatic intracranial hemorrhage (34%, 20-50%), encephalitis and/or myelitis (37%, 17-60%) and myopathy (72%, 67-77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease

    Adaptation automatique des données de prises en charge hospitaliÚres pour une utilisation secondaire en cancérologie

    No full text
    Avec la montĂ©e en charge de l’informatisation des systĂšmes d’information hospitaliers, une quantitĂ© croissante de donnĂ©es est produite tout au long de la prise en charge des patients. L’utilisation secondaire de ces donnĂ©es constitue un enjeu essentiel pour la recherche ou l’évaluation en santĂ©. Dans le cadre de cette thĂšse, nous discutons les verrous liĂ©s Ă  la reprĂ©sentation et Ă  la sĂ©mantique des donnĂ©es, qui limitent leur utilisation secondaire en cancĂ©rologie. Nous proposons des mĂ©thodes basĂ©es sur des ontologies pour l’intĂ©gration sĂ©mantique des donnĂ©es de diagnostics. En effet, ces donnĂ©es sont reprĂ©sentĂ©es par des terminologies hĂ©tĂ©rogĂšnes. Nous Ă©tendons les modĂšles obtenus pour la reprĂ©sentation de la maladie tumorale, et les liens qui existent avec les diagnostics. Enfin, nous proposons une architecture combinant entrepĂŽts de donnĂ©es, registres de mĂ©tadonnĂ©es et web sĂ©mantique. L’architecture proposĂ©e permet l’intĂ©gration syntaxique et sĂ©mantique d’un grand nombre d’observations. Par ailleurs, l’intĂ©gration de donnĂ©es et de connaissances (sous la forme d’ontologies) a Ă©tĂ© utilisĂ©e pour construire un algorithme d’identification de la maladie tumorale en fonction des diagnostics prĂ©sents dans les donnĂ©es de prise en charge. Cet algorithme basĂ© sur les classes de l’ontologie est indĂ©pendant des donnĂ©es effectivement enregistrĂ©es. Ainsi, il fait abstraction du caractĂšre hĂ©tĂ©rogĂšne des donnĂ©es diagnostiques initialement disponibles. L’approche basĂ©e sur une ontologie pour l’identification de la maladie tumorale, permet une adaptation rapide des rĂšgles d’agrĂ©gation en fonction des besoins spĂ©cifiques d’identification. Ainsi, plusieurs versions du modĂšle d’identification peuvent ĂȘtre utilisĂ©es avec des granularitĂ©s diffĂ©rentes.With the increasing adoption of Electronic Health Records (EHR), the amount of data produced at the patient bedside is rapidly increasing. Secondary use is there by an important field to investigate in order facilitate research and evaluation. In these work we discussed issues related to data representation and semantics within EHR that need to be address in order to facilitate secondary of structured data in oncology. We propose and evaluate ontology based methods for heterogeneous diagnosis terminologies integration in oncology. We then extend obtained model to enable tumoral disease representation and links with diagnosis as recorded in EHR. We then propose and implement a complete architecture combining a clinical data warehouse, a metadata registry and web semantic technologies and standards. This architecture enables syntactic and semantic integration of a broad range of hospital information System observation. Our approach links data with external knowledge (ontology), in order to provide a knowledge resource for an algorithm for tumoral disease identification based on diagnosis recorded within EHRs. As it based on the ontology classes, the identification algorithm is uses an integrated view of diagnosis (avoiding semantic heterogeneity). The proposed architecture leading to algorithm on the top of an ontology offers a flexible solution. Adapting the ontology, modifying for instance the granularity provide a way for adapting aggregation depending on specific need

    Automated adaptation of Electronic Heath Record for secondary use in oncology

    No full text
    With the increasing adoption of Electronic Health Records (EHR), the amount of data produced at the patient bedside is rapidly increasing. Secondary use is there by an important field to investigate in order facilitate research and evaluation. In these work we discussed issues related to data representation and semantics within EHR that need to be address in order to facilitate secondary of structured data in oncology. We propose and evaluate ontology based methods for heterogeneous diagnosis terminologies integration in oncology. We then extend obtained model to enable tumoral disease representation and links with diagnosis as recorded in EHR. We then propose and implement a complete architecture combining a clinical data warehouse, a metadata registry and web semantic technologies and standards. This architecture enables syntactic and semantic integration of a broad range of hospital information System observation. Our approach links data with external knowledge (ontology), in order to provide a knowledge resource for an algorithm for tumoral disease identification based on diagnosis recorded within EHRs. As it based on the ontology classes, the identification algorithm is uses an integrated view of diagnosis (avoiding semantic heterogeneity). The proposed architecture leading to algorithm on the top of an ontology offers a flexible solution. Adapting the ontology, modifying for instance the granularity provide a way for adapting aggregation depending on specific needsAvec la montĂ©e en charge de l’informatisation des systĂšmes d’information hospitaliers, une quantitĂ© croissante de donnĂ©es est produite tout au long de la prise en charge des patients. L’utilisation secondaire de ces donnĂ©es constitue un enjeu essentiel pour la recherche ou l’évaluation en santĂ©. Dans le cadre de cette thĂšse, nous discutons les verrous liĂ©s Ă  la reprĂ©sentation et Ă  la sĂ©mantique des donnĂ©es, qui limitent leur utilisation secondaire en cancĂ©rologie. Nous proposons des mĂ©thodes basĂ©es sur des ontologies pour l’intĂ©gration sĂ©mantique des donnĂ©es de diagnostics. En effet, ces donnĂ©es sont reprĂ©sentĂ©es par des terminologies hĂ©tĂ©rogĂšnes. Nous Ă©tendons les modĂšles obtenus pour la reprĂ©sentation de la maladie tumorale, et les liens qui existent avec les diagnostics. Enfin, nous proposons une architecture combinant entrepĂŽts de donnĂ©es, registres de mĂ©tadonnĂ©es et web sĂ©mantique. L’architecture proposĂ©e permet l’intĂ©gration syntaxique et sĂ©mantique d’un grand nombre d’observations. Par ailleurs, l’intĂ©gration de donnĂ©es et de connaissances (sous la forme d’ontologies) a Ă©tĂ© utilisĂ©e pour construire un algorithme d’identification de la maladie tumorale en fonction des diagnostics prĂ©sents dans les donnĂ©es de prise en charge. Cet algorithme basĂ© sur les classes de l’ontologie est indĂ©pendant des donnĂ©es effectivement enregistrĂ©es. Ainsi, il fait abstraction du caractĂšre hĂ©tĂ©rogĂšne des donnĂ©es diagnostiques initialement disponibles. L’approche basĂ©e sur une ontologie pour l’identification de la maladie tumorale, permet une adaptation rapide des rĂšgles d’agrĂ©gation en fonction des besoins spĂ©cifiques d’identification. Ainsi, plusieurs versions du modĂšle d’identification peuvent ĂȘtre utilisĂ©es avec des granularitĂ©s diffĂ©rentes
    • 

    corecore