374 research outputs found

    Curvature singularity and film-skating during drop impact

    Full text link
    We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric 3D model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.Comment: 5 figure

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure

    A 2-D asymmetric exclusion model for granular flows

    Full text link
    A 2-D version of the asymmetric exclusion model for granular sheared flows is presented. The velocity profile exhibits two qualitatively different behaviors, dependent on control parameters. For low friction, the velocity profile follows an exponential decay while for large friction the profile is more accurately represented by a Gaussian law. The phase transition occurring between these two behavior is identified by the appearance of correlations in the cluster size distribution. Finally, a mean--field theory gives qualitative and quantitative good agreement with the numerical results.Comment: 13 pages, 5 figures; typos added, one definition change

    Cavitation induced by explosion in a model of ideal fluid

    Full text link
    We discuss the problem of an explosion in the cubic-quintic superfluid model, in relation to some experimental observations. We show numerically that an explosion in such a model might induce a cavitation bubble for large enough energy. This gives a consistent view for rebound bubbles in superfluid and we indentify the loss of energy between the successive rebounds as radiated waves. We compute self-similar solution of the explosion for the early stage, when no bubbles have been nucleated. The solution also gives the wave number of the excitations emitted through the shock wave.Comment: 21 pages,13 figures, other comment

    Asymptotic behaviour of the Rayleigh--Taylor instability

    Full text link
    We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes predicted by Clavin & Williams\cite{clavin} for which we give a simplified demonstration. In particular we observe that the spike's curvature evolves like t3t^3 while the overshoot in acceleration shows a good agreement with the suggested 1/t51/t^5 law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.Comment: 4 pages, 6 figure

    Vortices in condensate mixtures

    Full text link
    In a condensate made of two different atomic molecular species, Onsager's quantization condition implies that around a vortex the velocity field cannot be the same for the two species. We explore some simple consequences of this observation. Thus if the two condensates are in slow relative translation one over the other, the composite vortices are carried at a velocity that is a fraction of the single species velocity. This property is valid for attractive interaction and below a critical velocity which corresponds to a saddle-node bifurcation.Comment: 4 pages, 3 figure

    Visual Field Analysis: A reliable method to score left and right eye use using automated tracking

    Get PDF
    Brain and behavioural asymmetries have been documented in various taxa. Many of these asymmetries involve preferential left and right eye use. However, measuring eye use through manual frame-by-frame analyses from video recordings is laborious and may lead to biases. Recent progress in technology has allowed the development of accurate tracking techniques for measuring animal behaviour. Amongst these techniques, DeepLabCut, a Python-based tracking toolbox using transfer learning with deep neural networks, offers the possibility to track different body parts with unprecedented accuracy. Exploiting the potentialities of DeepLabCut, we developed Visual Field Analysis, an additional open-source application for extracting eye use data. To our knowledge, this is the first application that can automatically quantify left–right preferences in eye use. Here we test the performance of our application in measuring preferential eye use in young domestic chicks. The comparison with manual scoring methods revealed a near perfect correlation in the measures of eye use obtained by Visual Field Analysis. With our application, eye use can be analysed reliably, objectively and at a fine scale in different experimental paradigms

    Stability and individual variability of social attachment in imprinting

    Get PDF
    Filial imprinting has become a model for understanding memory, learning and social behaviour in neonate animals. This mechanism allows the youngs of precocial bird species to learn the characteristics of conspicuous visual stimuli and display affiliative response to them. Although longer exposures to an object produce stronger preferences for it afterwards, this relation is not linear. Sometimes, chicks even prefer to approach novel rather than familiar objects. To date, little is known about how filial preferences develop across time. This study aimed to investigate filial preferences for familiar and novel imprinting objects over time. After hatching, chicks were individually placed in an arena where stimuli were displayed on two opposite screens. Using an automated setup, the duration of exposure and the type of stimuli were manipulated while the time spent at the imprinting stimulus was monitored across 6 days. We showed that prolonged exposure (3 days vs 1 day) to a stimulus produced robust filial imprinting preferences. Interestingly, with a shorter exposure (1 day), animals re-evaluated their filial preferences in functions of their spontaneous preferences and past experiences. Our study suggests that predispositions influence learning when the imprinting memories are not fully consolidated, driving animal preferences toward more predisposed stimuli

    A continuous non-linear shadowing model of columnar growth

    Full text link
    We propose the first continuous model with long range screening (shadowing) that described columnar growth in one space dimension, as observed in plasma sputter deposition. It is based on a new continuous partial derivative equation with non-linear diffusion and where the shadowing effects apply on all the different processes.Comment: Fast Track Communicatio
    • 

    corecore