99 research outputs found

    Detection of Yarkovsky acceleration in the context of precovery observations and the future Gaia catalogue

    Full text link
    The Yarkovsky effect is a weak non-gravitational force leading to a small variation of the semi-major axis of an asteroid. Using radar measurements and astrometric observations, it is possible to measure a drift in semi-major axis through orbit determination. This paper aims to detect a reliable drift in semi-major axis of near-Earth asteroids (NEAs) from ground-based observations and to investigate the impact of precovery observations and the future Gaia catalogue in the detection of a secular drift in semi-major axis. We have developed a precise dynamical model of an asteroid's motion taking the Yarkovsky acceleration into account and allowing the fitting of the drift in semi-major axis. Using statistical methods, we investigate the quality and the robustness of the detection. By filtering spurious detections with an estimated maximum drift depending on the asteroid's size, we found 46 NEAs with a reliable drift in semi-major axis in good agreement with the previous studies. The measure of the drift leads to a better orbit determination and constrains some physical parameters of these objects. Our results are in good agreement with the 1/D dependence of the drift and with the expected ratio of prograde and retrograde NEAs. We show that the uncertainty of the drift mainly depends on the length of orbital arc and in this way we highlight the importance of the precovery observations and data mining in the detection of consistent drift. Finally, we discuss the impact of Gaia catalogue in the determination of drift in semi-major axis.Comment: 11 pages, 5 figures, accepted in A&

    Statistical and Numerical Study of Asteroid Orbital Uncertainty

    Get PDF
    The knowledge of the orbit or the ephemeris uncertainty of asteroid presents a particular interest for various purposes. These quantities are for instance useful for recovering asteroids, for identifying lost asteroids or for planning stellar occultation campaigns. They are also needed to estimate the close approach of Near-Earth asteroids, and subsequent risk of collision. Ephemeris accuracy can also be used for instrument calibration purposes or for scientific applications. Asteroid databases provide information about the uncertainty of the orbits allowing the measure of the quality of an orbit. The aims of this paper is to analyse these different uncertainty parameters and to estimate the impact of the different measurements on the uncertainty of orbits. We particularly deal with two main databases ASTORB and MPCORB providing uncertainty parameters for asteroid orbits. Statistical methods are used in order to estimate orbital uncertainty and compare with parameters from databases. Simulations are also generated to deal with specific measurements such as future Gaia or present radar measurements. Relations between the uncertainty parameter and the characteristics of the asteroid (orbital arc, absolute magnitude, ...) are highlighted. Moreover, a review of the different measuments are compiled and the impact of these measures on the accuracy of the orbit is also estimated.Comment: 11 pages, 10 figures, accepted by A&

    A new catalogue of observations of the eight major satellites of Saturn (1874-2007)

    No full text
    The original publication in Astronomy & Astrophysics is available at www.aanda.org.International audienceContext : The lastest catalogue of observations includes about 51 000 observations (over 3500 nights) of Saturn's satellites from 1874 to 1989. Since 1989, many observations have been published, often in different formats, based on the publication. Aims : Our new catalogue of observations of the eight major satellites of Saturn includes the observations of the previous catalogues, newly published data and also old observations left out of the previous catalogue. The observations are tabulated in a consistent format. Methods : We give, for each observation, the corrections applied for reduction such as refraction, aberration or phase effects. Furthermore, when it was possible, the instrument and catalogue are also indicated. Results : The new catalogue presents more than 130 000 observations (over 6000 nights) of the eight major satellites of Saturn from 1874 to 2007

    Statistical analysis on the uncertainty of asteroid ephemerides

    No full text
    International audienceThe large number of asteroids allows a statistical analysis especially for their orbital uncertainty. It presents a particular interest for Near-Earth asteroids in order to estimate their close approach from Earth and eventually their risk of collision. Using ASTORB and MPCORB databases, we analyse the different uncertainty parameters (CEU, U) and highlight relations between the uncertainty parameter and the characteristics of the asteroid (orbital arc, absolute magnitude, ...)

    The dynamics of rings around Centaurs and Trans-Neptunian Objects

    Full text link
    Since 2013, dense and narrow rings are known around the small Centaur object Chariklo and the dwarf planet Haumea. Dense material has also been detected around the Centaur Chiron, although its nature is debated. This is the first time ever that rings are observed elsewhere than around the giant planets, suggesting that those features are more common than previously thought. The origins of those rings remain unclear. In particular, it is not known if the same generic process can explain the presence of material around Chariklo, Chiron, Haumea, or if each object has a very different history. Nonetheless, a specific aspect of small bodies is that they may possess a non-axisymmetric shape (topographic features and or elongation) that are essentially absent in giant planets. This creates strong resonances between the spin rate of the object and the mean motion of ring particles. In particular, Lindblad-type resonances tend to clear the region around the corotation (or synchronous) orbit, where the particles orbital period matches that of the body. Whatever the origin of the ring is, modest topographic features or elongations of Chariklo and Haumea explain why their rings should be found beyond the outermost 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Comparison of the resonant locations relative to the Roche limit of the body shows that fast rotators are favored for being surrounded by rings. We discuss in more details the phase portraits of the 1/2 and 1/3 resonances, and the consequences of a ring presence on satellite formation.Comment: Chapter to be published in the book "The Transneptunian Solar System", Dina Prialnik, Maria Antonietta Barucci, Leslie Young Eds. Elsevie

    Asteroid data mining and precoveries in the Gaia area

    No full text
    Program available at: http://www.imcce.fr/hosted_sites/naroo/program.htmlInternational audienceAsteroids are components of a very large family of the Solar System. We denote more than 590 000 such objects at the present date. As soon as there is a discovery of an asteroid, a preliminary orbit can be calculated and the improvement of this orbit can be performed thanks to new observations to be done starting from their discovery. But ancient observations can also be retrieved in the past. The data mining allows us to find these old observations in archives. We present general considerations on the asteroid orbital precision in this article and the very important impact of the future Gaia catalogue. We show the expected consequences for the study of Near-Earth Asteroids, in particular for 99942 Apophis

    Phoebe's orbit from ground-based and space-based observations

    Get PDF
    The ephemeris of Phoebe, the ninth satellite of Saturn, is not very accurate. Previous dynamical models were usually too simplified, the astrometry is heterogeneous and, the Saturn's ephemeris itself is an additionnal source of error. The aim is to improve Phoebe's ephemeris by using a large set of observations, correcting some systematic errors and updating the dynamical model. The dynamical model makes use of the most recent ephemeris of planets and Saturnian satellites. The astrometry of Phoebe is improved by using a compilation of ground-based and space-based observations and by correcting the bias in stellar catalogues used for the reduction. We present an accurate ephemeris of Phoebe with residuals of 0.45 arcsec and with an estimated accuracy of Phoebe's position of less that 100 km on 1990-2020 period.Comment: 10 pages, 9 figures, accepted by A&

    Estimating the accuracy of satellite ephemerides using the bootstrap method

    Get PDF
    International audienceContext: The accuracy of predicted orbital positions depends on the quality of the theorical model and of the observations used to fit the model. During the period of observations, this accuracy can be estimated through comparison with observations. Outside this period, the estimation remains difficult. Many methods have been developed for asteroid ephemerides in order to evaluate this accuracy. Aims: This paper introduces a new method to estimate the accuracy of predicted positions at any time, in particular outside the observation period. Methods: This new method is based upon a bootstrap resampling and allows this estimation with minimal assumptions. Results: The method was applied to two of the main Saturnian satellites, Mimas and Titan, and compared with other methods used previously for asteroids. The bootstrap resampling is a robust and practical method for estimating the accuracy of predicted positions

    CCD Positions of Saturn and its Major Satellites from 2002-2006

    No full text
    International audienceThis paper presents 2154 precise positions of Saturn and its major satellites from 359 CCD exposures taken with the 1 m telescope at the Yunnan Observatory during the years 2002-2006. It also describes the improved image-processing techniques for the pixel positional measurement of Saturn's rings and its major satellites, especially for Mimas and Enceladus. The four bright satellites S3-S6 (i.e., Tethys, Dione, Rhea, and Titan) of Saturn are used to calibrate the CCD field of view by comparing their pixel positions with their theoretical ones from the theory TASS1.7. The observational positions of these major satellites, when measured with respect to Rhea, usually have a good agreement with their theoretical ones except for Mimas, which has the biggest systematic difference of about -0.3 arcsec in R.A. in its 2002 observational data sets. However, these differences of Mimas become much smaller when the recent Jet Propulsion Laboratory ephemeris is replaced. The rms errors in each coordinate are about 40 mas for Saturn and its bright satellites S2-S6, and 90 mas for Mimas. These positional observations are comparable to the best ground-based CCD observations

    A Convenient Solution to Geometric Distortion and Its Application to Phoebe's Observations

    No full text
    International audienceA simple but effective approach is proposed for measuring the geometric distortion of a CCD field of view of a ground-based telescope. For three open clusters (M35, M67, and NGC 2324), 425 CCD frames taken by a 1 m telescope at the Yunnan Observatory are used to test this approach. It is found that the geometric distortion pattern depends strongly on the corresponding filter used. The geometric distortion is then used to correct the pixel positions for Phoebe, the ninth satellite of Saturn, and its reference stars imaged in 220 CCD frames taken by the same telescope. The standard deviation of the (O - C; observed minus computed) residuals of Phoebe is significantly improved after correcting the geometric distortions
    corecore