6 research outputs found

    Genetically Engineered Crops: Importance of Diversified Integrated Pest Management for Agricultural Sustainability

    Get PDF
    As the global population continues to expand, utilizing an integrated approach to pest management will be critically important for food security, agricultural sustainability, and environmental protection. Genetically engineered (GE) crops that provide protection against insects and diseases, or tolerance to herbicides are important tools that complement a diversified integrated pest management (IPM) plan. However, despite the advantages that GE crops may bring for simplifying the approach and improving efficiency of pest and weed control, there are also challenges for successful implementation and sustainable use. This paper considers how several GE traits, including those that confer protection against insects by expression of proteins from Bacillus thuringiensis (Bt), traits that confer tolerance to herbicides, and RNAi-based traits that confer resistance to viral pathogens, can be key elements of a diversified IPM plan for several different crops in both developed and developing countries. Additionally, we highlight the importance of community engagement and extension, strong partnership between industry, regulators and farmers, and education and training programs, for achieving long-term success. By leveraging the experiences gained with these GE crops, understanding the limitations of the technology, and considering the successes and failures of GE traits in IPM plans for different crops and regions, we can improve the sustainability and versatility of IPM plans that incorporate these and future technologies

    Historia y situación actual de la producción de frijol en los países latinoamericanos afectados por geminivirus transmitidos por mosca blanca: Brasil

    No full text
    América del Sur, Brasil.Centro Internacional de Agricultura Tropical (CIAT)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Estación Experimental Agrícola Fabio Baudrit Moreno (EEAFBM

    Development of Plasmid DNA Reference Material for the Quantification of Genetically Modified Common Bean Embrapa 5.1

    No full text
    The genetically modified (GM) common bean Embrapa 5.1 was recently approved for commercialization. The reliable detection and quantification of GM organisms is strongly dependent on validated methods as well as calibration systems. This work presents the development of a calibrant plasmid for Embrapa 5.1 common bean detection. The reaction parameters were determined and compared for both the plasmid DNA (pDNA) and the genomic DNA (gDNA). PCR efficiencies for pDNA were 81% for the construction-specific assays and 76% for the taxon-specific assay, whereas for gDNA efficiencies were 94 and 93%, respectively. The limits of detection (LOD) in both qPCR assays were 10<sup>2</sup> and 10<sup>3</sup> copies of gDNA and pDNA per PCR reaction, respectively. This is sufficient to detect 0.067 and 0.67% of GM common bean in 100 ng of DNA, respectively, which is in agreement with detecting the 1% GM content required by the Brazilian legislation

    Diversidad genética en los geminivirus del frijol transmitidos por mosca blanca

    Get PDF
    Programa Cooperativo Regional de Frijol para Centroamérica, México y el Caribe (PROFRIJOL)Cooperación Suiza para el Desarrollo (COSUDE)Centro Internacional de Agricultura Tropical (CIAT)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Estación Experimental Agrícola Fabio Baudrit Moreno (EEAFBM
    corecore