234 research outputs found

    CrossTalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology

    Get PDF
    For the first time in history, some humans live without a palpable pulse (Purohit et al. 2018). This remarkable physiology is the consequence of surgical implantation of a continuous‐flow left ventricular assist device (CF‐LVAD) in patients with end‐stage heart failure. Blood flow produced by CF‐LVADs has a low oscillatory profile in the aorta that results in significantly reduced pulsatility in all arterial compartments (Castagna et al. 2017; Fig. 1). Despite remarkable gains in quality of life and longevity, complications that affect not only morbidity, such as gastrointestinal bleeding, but also mortality, such as strokes, are still prevalent in CF‐LVAD patients. Low pulsatility has been proposed as a major culprit in contributing to these adverse events (Mancini & Colombo, 2015; Goldstein et al. 2018). In this CrossTalk proposal, we present the current arguments in favour of maintaining an appropriate amount of arterial pulsatility, in particular in the cerebral circulation, to lower risk in these patients

    Physical inactivity is a strong risk factor for stroke in the oldest old: Findings from a multi-ethnic population (the Northern Manhattan Study)

    Get PDF
    Background The fastest growing segment of the population is those age ≥80 who have the highest stroke incidence. Risk factor management is complicated by polypharmacy-related adverse events. Aims To characterize the impact of physical inactivity for stroke by age in a multi-ethnic prospective cohort study (NOMAS, n = 3298). Methods Leisure time physical activity was assessed by a validated questionnaire and our primary exposure was physical inactivity (PI). Participants were followed annually for incident stroke. We fit Cox-proportional hazard models to calculate hazard ratios and 95% confidence intervals (HR 95% CI) for the association of PI and other risk factors with risk of stroke including two-way interaction terms between the primary exposures and age (<80 vs. ≥80). Results The mean age was 69 ± 10.3 years and 562 (17%) were ≥80 at enrolment. PI was common in the cohort (40.8%). Over a median of 14 years, we found 391 strokes. We found a significant interaction of age ≥80 on the risk of stroke with PI (p = 0.03). In stratified models, PI versus any activity (adjusted HR 1.60, 95%CI 1.05–2.42) was associated with an increased risk of stroke among those ≥80. Conclusion Physical inactivity is a treatable risk factor for stroke among those older than age 80. Improving activity may reduce the risk of stroke in this segment of the population

    Maternal Morbidity Outcomes in Idiopathic Moyamoya Syndrome in New York State

    Get PDF
    Background: Pregnancy is associated with an increased risk of stroke in young women. Idiopathic moyamoya syndrome (IMMS) is a rare condition characterized by progressive narrowing of large cerebral arteries resulting in flimsy collaterals prone to rupture or thrombosis. Data are limited on pregnancy outcomes in women with IMMS. We hypothesized that IMMS would be associated with increased pregnancy morbidity, including stroke. Conclusion: Pregnancies within 1 year prior or any time after IMMS diagnosis did not have increased maternal morbidity compared to unexposed pregnancies after adjusting for age and clustering of women with multiple pregnancies. Prospective studies are needed to better characterize increased maternal risks for women with moyamoya syndrome and develop preventive strategies

    MARCKS phosphorylation is modulated by a peptide mimetic of MARCKS effector domain leading to increased radiation sensitivity in lung cancer cell lines

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality in the United States. Kinase hyperactivation is a known mechanism of tumorigenesis. The phosphorylation status of the plasma membrane-associated protein myristoylated alanine rich C-kinase substrate (MARCKS) effector domain (ED) was previously established as being important in the sensitivity of lung cancer to radiation. Specifically, when MARCKS ED was in a non-phosphorylated state, lung cancer cells were more susceptible to ionizing radiation and experienced prolonged double-strand DNA breaks. Additional studies demonstrated that the phosphorylation status of MARCKS ED is important for gene expression and in vivo tumor growth. The present study used a peptide mimetic of MARCKS ED as a therapeutic intervention to modulate MARCKS phosphorylation. Culturing A549, H1792 and H1975 lung cancer cell lines with the MARCKS ED peptide led to reduced levels of phosphorylated MARCKS and phosphorylated Akt serine/threonine kinase 1. Further investigation demonstrated that the peptide therapy was able to reduce lung cancer cell proliferation and increase radiation sensitivity. In addition, the MARCKS peptide therapy was able to prolong double-strand DNA breaks following ionizing radiation exposure. The results of the present study demonstrate that a peptide mimetic of MARCKS ED is able to modulate MARCKS phosphorylation, leading to an increase in sensitivity to radiation. Keywords: lung cancer, myristoylated alanine rich C-kinase substrate, radiation sensitivity, effector domain, peptide mimeti

    Kinomic exploration of temozolomide and radiation resistance in Glioblastoma multiforme xenolines

    Get PDF
    Glioblastoma multiforme (GBM) represents the most common and deadly primary brain malignancy, particularly due to temozolomide (TMZ) and radiation (RT) resistance. To better understand resistance mechanisms, we examined global kinase activity (kinomic profiling) in both treatment sensitive and resistant human GBM patient-derived xenografts (PDX or “xenolines”)

    Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine

    Get PDF
    Purpose Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, current molecular testing of tumors at the genomic or transcriptomic level are very indirect measures of biological response to a drug, particularly for small molecule inhibitors that target kinases. Kinase activity profiling is therefore theorized to be more reflective of in vivo biology than many current molecular analysis techniques. As a result, this study seeks to prove the feasibility of combining a novel minimally invasive biopsy technique that expands the number of lesions amenable for biopsy with subsequent ex vivo kinase activity analysis. Methods Eight patients with lung lesions of varying location and size were biopsied using the novel electromagnetic navigational bronchoscopy (ENB) technique. Basal kinase activity (kinomic) profiles and ex vivo interrogation of samples in combination with tyrosine kinase inhibitors erlotinib, crizotinib, and lapatinib were performed by PamStation 12 microarray analysis. Results Kinomic profiling qualitatively identified patient specific kinase activity profiles as well as patient and drug specific changes in kinase activity profiles following exposure to inhibitor. Thus, the study has verified the feasibility of ENB as a method for obtaining tissue in adequate quantities for kinomic analysis and has demonstrated the possible use of this tissue acquisition and analysis technique as a method for future study of lung cancer biomarkers. Conclusions We demonstrate the feasibility of using ENB-derived biopsies to perform kinase activity assessment in lung cancer patients

    The Effector Domain of MARCKS Is a Nuclear Localization Signal that Regulates Cellular PIP2 Levels and Nuclear PIP2 Localization

    Get PDF
    Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression

    Inclusion, Diversity, Equity, and Access Annual Report, Fiscal Year 2023

    Get PDF
    Report of Milner Library\u27s activities and initiatives related to Inclusion, Diversity, Equity, and Access in Fiscal Year 2023.https://ir.library.illinoisstate.edu/mlp/1035/thumbnail.jp

    Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. Common molecular drivers of lung cancer are mutations in receptor tyrosine kinases (RTKs) leading to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pro-growth, pro-survival signaling pathways. Myristoylated alanine rich C-kinase substrate (MARCKS) is a protein that has the ability to mitigate this signaling cascade by sequestering the target of PI3K, phosphatidylinositol (4,5)-bisphosphate (PIP2). As such, MARCKS has been implicated as a tumor suppressor, though there is some evidence that MARCKS may be tumor promoting in certain cancer types. Since the MARCKS function depends on its phosphorylation status, which impacts its subcellular location, MARCKS role in cancer may depend highly on the signaling context. Currently, the importance of MARCKS in lung cancer biology is limited. Thus, we investigated MARCKS in both clinical specimens and cell culture models. Immunohistochemistry scoring of MARCKS protein expression in a diverse lung tumor tissue array revealed that the majority of squamous cell carcinomas stained positive for MARCKS while other histologies, such as adenocarcinomas, had lower levels. To study the importance of MARCKS in lung cancer biology, we used inducible overexpression of wild-type (WT) and non-phosphorylatable (NP)-MARCKS in A549 lung cancer cells that had a low level of endogenous MARCKS. We found that NP-MARCKS expression, but not WT-MARCKS, enhanced the radiosensitivity of A549 cells in part by inhibiting DNA repair as evidenced by prolonged radiation-induced DNA double strand breaks. We confirmed the importance of MARCKS phosphorylation status by treating several lung cancer cell lines with a peptide mimetic of the phosphorylation domain, the effector domain (ED), which effectively attenuated cell growth as measured by cell index. Thus, the MARCKS ED appears to be an important target for lung cancer therapeutic development
    corecore