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For the first time in history, some humans live without a palpable pulse (Purohit et al., 2018). 21 

This remarkable physiology is the consequence of surgical implantation of a continuous-flow left 22 

ventricular assist device (CF-LVAD) in patients with end-stage heart failure. This CF-LVAD 23 

creates a low oscillatory blood flow profile in the aorta that results in significantly reduced 24 

pulsatility in all arterial compartments (Castagna et al., 2017, Figure 1A and 1B). Despite 25 

remarkable gains in quality of life and longevity, complications that affect not only morbidity 26 

such as gastrointestinal bleeding, but also mortality such as strokes, are still prevalent in CF-27 

LVAD patients. Low pulsatility has been proposed as a major culprit in contributing to these 28 

adverse events (Mancini & Colombo, 2015; Goldstein et al., 2018). In this CrossTalk, we present 29 

the current arguments in favour of maintaining an appropriate amount of arterial pulsatility, in 30 

particular in the cerebral circulation, to lower risk in these patients. 31 

 32 

Cerebral microcirculation and O2 kinetics 33 

A macro-circulatory link between cardiac output, aortic stiffness and arterial pulsatility with the 34 

brain is well-established (Mitchell et al., 2011; Jefferson et al., 2015). At the level of the 35 

microcirculation, it is thought that the healthy circulation already presents with absence of pulse 36 

pressure (O'Rourke & Hashimoto, 2007), and hence CF-LVADs would not create a different 37 

environment for gas exchange from normal physiology. However, even in healthy individuals, 38 

measurements of arteriolar haemodynamics have revealed pulsatile patterns (Rappaport et al., 39 

1959; Shore, 2000). An important implication is that a pulsatile velocity profile entails that 40 

cerebral transit time (CTT) slows in the diastolic phase and facilitates the oxygen gradient for 41 

gas exchange. In CF-LVAD patients, the increased diastolic blood velocity may result in an 42 

overall elevated mean blood velocity (Brassard et al., 2011; Castagna et al., 2017, and Figure 43 



 

 

1B), thereby impairing oxygen kinetics (Wardlaw et al., 2002). However, data on absolute blood 44 

velocities are scarce, or their interpretation currently lacks confidence because the assessment of 45 

cerebral blood velocities, even in the pre-arteriolar circulation, has typically not been performed 46 

with the necessary angle correction of the Doppler signal. Whatever the real O2 kinetics in CF-47 

LVAD, it is known that cerebral blood flow is also regulated for reasons other than O2 48 

requirements (Mintun et al., 2001). Thus, the low pulsatile, diastolic-dominant haemodynamics 49 

of CF-LVAD impact on cerebral artery properties beyond gas exchange, as discussed in the 50 

following paragraphs. 51 

 52 

Cerebral auto-regulation 53 

Cerebral autoregulation has been proposed to take effect across a more narrow range of perfusion 54 

pressure than previously thought (Willie et al., 2014). Consequently, the low systolic blood 55 

pressure and low-to-normal mean arterial pressure coupled with a normal cardiac output mean 56 

that CF-LVAD patients may find themselves on an unusual point of the perfusion-cerebral blood 57 

flow (CBF) curve, with high flow into a low-resistance cerebral circulation (Cornwell et al., 58 

2014). The high-flow low-resistance is directly caused by the low-pulsatile haemodynamics of 59 

CF-LVAD. Notwithstanding, cerebral auto-regulation may be preserved in CF-LVAD patients 60 

(Ono et al., 2012; Cornwell et al., 2014), independent of end-tidal CO2 concentrations (Cornwell 61 

et al., 2014). However, some remaining differences to normal brain physiology can be noted. For 62 

instance, the variance in CBF was most similar between healthy individuals and CF-LVAD 63 

patients, while patients with pulsatile devices responded significantly differently to a sit-to-stand 64 

challenge (Cornwell et al., 2014). These intriguing findings may indicate a meaningful role of 65 

added pulsatility in the context of LVAD and justify a more detailed investigation into the 66 



 

 

dynamics of perfusion pressure (i.e. pulse pressure) and cerebral autoregulation in the setting of 67 

low absolute pressures (Ono et al., 2017). Rather than being disturbed itself, the maintained 68 

cerebral autoregulation in CF-LVAD may cause a reduction in pulsatility since the total flow is 69 

already high.  70 

 71 

Endothelial function, bleeding and aortic stiffness 72 

Pulsatility of flow against the cyclical stretch of the arterial wall is a critical contributor to 73 

endothelial production of nitric oxide and cardiovascular health (Hahn & Schwartz, 2009). The 74 

high occurrence of bleeding events such as GI bleeding and haemorrhagic strokes indicate a 75 

primary problem with endothelial integrity. A recent study confirms elegantly that a staggering 76 

proportion of LVAD patients have cortical microbleeds in a pattern similar to cerebral amyloid 77 

angiopathy, a condition with high rates of arteriolar fragility (Yoshioka et al., 2017). 78 

Furthermore, reduced pulsatility appears responsible for the marked reduction in endothelial 79 

nitric oxide bioavailability in CF-LVAD patients when compared to those on support with 80 

pulsatile device (Witman et al., 2015). While shear rate has not been measured in the cerebral 81 

circulation of CF-LVAD patients, it is conceivable that it would be higher than normal in the 82 

diastolic phase of the cardiac cycle, a circumstance that, when present in the carotid artery, has 83 

been associated with adverse cerebral events in non-LVAD populations (Mutsaerts et al., 2011). 84 

In addition, the high diastolic flow likely contributes to increased arterial stiffness observed in 85 

CF-LVAD patients by markedly attenuating the normal systolic-diastolic stretch and recoil cycle 86 

(Ambardekar et al., 2015; Patel et al., 2017). It is important to underline that in pulsatile 87 

circulations, aortic stiffness increases the transmission of pulsatility to the periphery, and, if 88 

exceeding normal pulsatility, is detrimental to the brain and other end-organs (Webb et al., 89 



 

 

2012). Paradoxically, this means that the reduced Windkessel effect in CF-LVAD patients 90 

because of the larger diastolic flow and increased aortic stiffness might be beneficial in some 91 

individuals via a mild augmentation of pulsatile dynamics transmitted to the periphery, which 92 

would otherwise be harmful to end-organs. Finally, elegant insight into bleeding-associated 93 

complications in CF-LVAD - which may include blood-brain-barrier disruption and cortical 94 

microbleeds - has been provided by Vincent et al. (2018). These authors showed that the loss of 95 

von Willebrand-Factor from the high shear forces within the mechanical device was, at least in 96 

part, offset by increased arterial pulsatility, which promoted new vWF release from the 97 

endothelium. Hence, mild increases in arterial pulsatility may mitigate bleeding risk in CF-98 

LVAD patients. 99 

 100 

Additional considerations 101 

Two common misconceptions related to CF-LVAD physiology, and specifically pulsatility, 102 

deserve attention. First, it is commonly assumed that CF-LVADs should produce perfectly 103 

continuous flow if the aortic valve does not open (Floras et al., 2015). This assumption overlooks 104 

the role of fluctuations of the intra-ventricular pressure within each cardiac cycle. The resulting 105 

changes in pressure-gradient between LVAD inflow and aortic outflow graft creates variability 106 

in pump flow between systole and diastole and thereby generates arterial pulsatility (Khalil et al., 107 

2008; Pagani, 2008).  108 

Second, the absolute blood volume in relation to the pulsatility is often ignored. Although 109 

pulsatility is typically reduced with a higher LVAD speed, the concomitant increase in cardiac 110 

output may have significant effects beyond that of reduced pulsatility. Acutely, a larger flow into 111 

the cerebral circulation will result in increased resistance and possibly higher pressure. In any 112 



 

 

case, it is important to consider cardiac output in relation to the local peripheral vasodilation and 113 

vasoconstriction. Studies examining the effects of pulsatile cardiopulmonary bypass reported that 114 

the number of perfused vessels in the microcirculation was increased compared with a 115 

continuous-flow circulation (O'Neil et al., 2012; Inamori et al., 2013). Importantly, the authors 116 

also reported, “pulsatility resulted in a reduction in the prevalence of pathologic hyper-117 

dynamically perfused vessels” (O'Neil et al., 2012). This observation strongly supports a role of 118 

pulsatility independent of blood volume since the latter was not significantly different between 119 

pulsatile and continuous-flow bypass. 120 

One final comment relates to the newest generation of CF-LVADs. Whether the recent 121 

improvements in outcomes, including the reduced incidence of stroke in HeartMate 3 patients 122 

(Mehra et al., 2018), can be attributed to the added pulsatility and the greater load-sensitivity of 123 

the device itself – and hence greater intrinsic pulsatile oscillation within one cardiac cycle 124 

(Pagani, 2008) –  remains to be confirmed. Collectively, the presented evidence suggests that 125 

CF-LVAD patients are currently not exposed to a normal brain physiology and that mild 126 

increases in arterial pulsatility may be beneficial.  127 
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Figures 272 

 273 

Figure 1. The schematic of the continuous-flow left ventricular assist device (CF-LVAD) shows 274 

the inflow cannula connection to the LV apex and the anastomosis of the outflow cannula to 275 

the ascending aorta (A). Representative pressure and flow profiles in the carotid artery and 276 

middle cerebral artery (highlighted in yellow) show the significant differences in pulsatility (B). 277 

LVAD schematic reproduced with permission from St Jude Medical. (B) was modified from 278 

Castagna et al. (2017) and was originally distributed under the terms of the Creative Commons 279 

Attribution 4.0 International License (http:/ /creativecommons.org/licenses/by/4.0/). 280 




