34 research outputs found

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    A clinical assessment of the Mucus Shaver

    No full text
    International audienceObjective: We evaluated a new device designed to clean the endotracheal tube in mechanically ventilated patients, the Mucus Shaver. Design: Prospective, randomized trial. Setting: University hospital intensive care unit. Patients: We enrolled 24 patients expected to remain ventilated for >72 hrs. Interventions: The Mucus Shaver is a concentric inflatable catheter for the removal of mucus and secretions from the interior surface of the endotracheal tube. The Mucus Shaver is advanced to the distal endotracheal tube tip, inflated, and subsequently withdrawn over a period of 3–5 secs. Patients were prospectively randomized within 2 hrs of intubation to receive standard endotracheal tube suctioning treatment or standard suctioning plus Mucus Shaver use until extubation. Measurements and Main Results: During the study period, demographic data, recent medical history, adverse events, and staff evaluation of the Mucus Shaver were recorded. At extubation, each endotracheal tube was removed, cultured, and analyzed by scanning electron microscopy. Twelve patients were assigned to the study group and 12 were assigned to the control group. No adverse events related to the use of the Mucus Shaver were observed. At extubation, only one endotracheal tube from the Mucus Shaver group was colonized, whereas in the control group ten endotracheal tubes were colonized (8% vs. 83%; p < .001). Scanning electron microscopy showed little secretions on the endotracheal tubes from the study group, whereas thick bacterial deposits were present on all the endotracheal tubes from the control group (p < .001 by Fisher exact test, using a maximum biofilm thickness of 30 μm as cut-off). The nursing staff was satisfied by the overall safety, feasibility, and efficacy of the Mucus Shaver. Conclusions: The Mucus Shaver is a safe, feasible, and efficient device for endotracheal tube cleaning in the clinical setting. The Mucus Shaver is helpful in preventing endotracheal tube colonization by potentially harmful microorganisms

    A low mortality model of chronic pulmonary hypertension in sheep.

    No full text
    <p>BACKGROUND: Pulmonary hypertension and right ventricular failure are major contributors to morbidity and mortality in chronic lung disease. Therefore, large animal models of pulmonary hypertension and right ventricular hypertrophy are needed to study underlying disease mechanisms and test new treatment modalities. The objective of this study was to create a low-mortality model of chronic pulmonary hypertension and right ventricular hypertrophy in sheep.</p> <p>METHODS: The vena cavae of nine sheep weighing 62 ± 2 (SEM) kg were injected with 0.375 g of dextran beads (sephadex) every day for 60 d. Pulmonary hemodynamics were assessed via pulmonary artery catheterization prior to the first injection and again on d 14, 28, 35, 42, 49, and 56. At the end of the experiment, the heart was removed, dissected, and weighed to determine the ratio of right ventricular mass to left ventricle plus septal mass (RV:LV+S).</p> <p>RESULTS: All sheep survived to 60 d. The average pulmonary artery pressure rose from 17 ± 1 mmHg at baseline to 35 ± 3 mmHg on d 56 with no significant change in cardiac output (8.7 ± 0.7 to 9.8 ± 0.7 L/min, P = 0.89). The RV:LV+S was significantly higher (0.42 ± 0.01, P < 0.001) than a historic group of untreated normal animals (0.35 ± 0.01, n = 13).</p> <p>CONCLUSION: This study provides a low-mortality large animal model of moderate chronic pulmonary hypertension and right ventricular hypertrophy.</p

    The relationships between air exposure, negative pressure, and hemolysis.

    No full text
    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.</p

    Veno-venous extracorporeal membrane oxygenation with interatrial shunting: a novel approach to lung transplantation for patients in right ventricular failure.

    No full text
    OBJECTIVE: This study evaluated the effectiveness of an atrial septostomy with veno-venous extracorporeal membrane oxygenation in alleviating high afterload right ventricular dysfunction while providing respiratory support. This technique could be applied as a bridge to lung transplantation. METHODS: Sheep (56±3 kg) underwent a clamshell thoracotomy and hemodynamic instrumentation, including right ventricular pressure and cardiac output. Sheep with and without tricuspid insufficiency (n=5 each) were examined. While sheep were on extracorporeal membrane oxygenation, right ventricular failure was established by banding the pulmonary artery until cardiac output was 40% to 60% of baseline. An extracardiac atrial shunt was created with modified vascular grafts to examine the effect of shunt flow on hemodynamics. Hemodynamic data were thus collected at baseline, during right ventricular failure, and for 1 hour at 100% (fully open), 70%, 50%, and 30% of baseline shunt flow. RESULTS: Cardiac output was returned to baseline values (tricuspid insufficiency: 5.2±0.2 L/min, without tricuspid insufficiency: 5.3±1.2 L/min) with 100% shunt flow (tricuspid insufficiency: 4.8±1.1 L/min, without tricuspid insufficiency: 4.8±1.0 L/min; P=.15) but remained significantly lower than baseline at 70% to 30% shunt flow. At 100% shunt flow, tricuspid insufficiency shunt flow was 1.4±0.8 L/min and without tricuspid insufficiency shunt flow was 1.7±0.2 L/min. Right ventricular pressure was significantly elevated over baseline values at all shunt flows (P CONCLUSIONS: An atrial septostomy accompanied by veno-venous extracorporeal membrane oxygenation is capable of eliminating right ventricular failure while maintaining normal arterial blood gases if sufficient shunt flows are achieved. The presence of tricuspid insufficiency improves the efficacy of the shunt.</p

    In-parallel artificial lung attachment at high flows in normal and pulmonary hypertension models.

    No full text
    BACKGROUND: End-stage lung disease patients who require a thoracic artificial lung (TAL) must be extubated and rehabilitated prior to lung transplantation. The purpose of this study is to evaluate hemodynamics and TAL function under simulated rest and exercise conditions in normal and pulmonary hypertension sheep models. METHODS: The TAL, the MC3 Biolung (MC3, Inc, Ann Arbor, MI), was attached between the pulmonary artery and left atrium in nine normal sheep and eight sheep with chronic pulmonary hypertension. An adjustable band was placed around the distal pulmonary artery to control the percentage of cardiac output (CO) diverted to the TAL. Pulmonary system hemodynamics and TAL function were assessed at baseline (no flow to the TAL) and with approximately 60%, 75%, and 90% of CO diverted to the TAL. Intravenous dobutamine (0, 2, and 5 mcg . kg(-1). min(-1)) was used to simulate rest and exercise conditions. RESULTS: At 0 and 2 mcg . kg(-1). min(-1), CO did not change significantly with flow diversion to the TAL for both models. At 5 mcg . kg(-1). min(-1), CO decreased with increasing TAL flow up to 28% +/- 5% in normal sheep and 23% +/- 5% in pulmonary hypertension sheep at 90% flow diversion to the artificial lung. In normal sheep, the pulmonary system zeroth harmonic impedance modulus, Z(0), increased with increasing flow diversion. In hypertensive sheep, Z(0) decreased at 60% and 75% flow diversion and returned to baseline levels at 90%. The TAL outlet blood oxygen saturation was 95% or greater under all conditions. CONCLUSIONS: Pulmonary artery to left atrial TAL use will not decrease CO during rest or mild exercise but may not allow more vigorous exercise.</p
    corecore