1,775 research outputs found
Influence of the Fermi Surface Morphology on the Magnetic Field-Driven Vortex Lattice Structure Transitions in YBaCuO0, 0.15
We report small-angle neutron scattering measurements of the vortex lattice
(VL) structure in single crystals of the lightly underdoped cuprate
superconductor YBa2Cu3O6.85. At 2 K, and for fields of up to 16 T applied
parallel to the crystal c-axis, we observe a sequence of field-driven and
first-order transitions between different VL structures. By rotating the field
away from the c-axis, we observe each structure transition to shift to either
higher or lower field dependent on whether the field is rotated towards the
[100] or [010] direction. We use this latter observation to argue that the
Fermi surface morphology must play a key role in the mechanisms that drive the
VL structure transitions. Furthermore, we show this interpretation is
compatible with analogous results obtained previously on lightly overdoped
YBa2Cu3O7. In that material, it has long-been suggested that the high field VL
structure transition is driven by the nodal gap anisotropy. In contrast, the
results and discussion presented here bring into question the role, if any, of
a nodal gap anisotropy on the VL structure transitions in both YBa2Cu3O6.85 and
YBa2Cu3O7
Multidimensional heritability analysis of neuroanatomical shape
In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41EB015896)United States. National Institutes of Health (S10RR023043)United States. National Institutes of Health (S10RR023401)United States. National Institutes of Health (K25CA181632)United States. National Institutes of Health (K01MH099232)United States. National Institutes of Health (K99MH101367)United States. National Institutes of Health (R21AG050122-01A1)United States. National Institutes of Health (R41AG052246-01)United States. National Institutes of Health (1K25EB013649-01)United States. National Institutes of Health (K24MH094614)United States. National Institutes of Health (R01MH101486
Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat
Background:
Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia.
Methods:
After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7.
Results:
Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery.
Conclusion:
These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man
Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy
Purpose: To enhance an in-house graphic-processing-unit (GPU) accelerated
virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model
aperture blocks in both dose calculation and optimization for pencil beam
scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods
and Materials: A block aperture module was integrated into VPMC. VPMC was
validated by an opensource code, MCsquare, in eight water phantom simulations
with 3cm thick brass apertures: four were with aperture openings of 1, 2, 3,
and 4cm without a range shifter, while the other four were with same aperture
opening configurations with a range shifter of 45mm water equivalent thickness.
VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small
targets (average volume 8.4 cc). Finally, 3 patients were selected for robust
optimization with aperture blocks using VPMC. Results: In the water phantoms,
3D gamma passing rate (2%/2mm/10%) between VPMC and MCsquare were
99.710.23%. In the patient geometries, 3D gamma passing rates (3%/2mm/10%)
between VPMC/MCsquare and RayStation MC were 97.792.21%/97.781.97%,
respectively. The calculation time was greatly decreased from 112.45114.08
seconds (MCsquare) to 8.206.42 seconds (VPMC), both having statistical
uncertainties of about 0.5%. The robustly optimized plans met all the
dose-volume-constraints (DVCs) for the targets and OARs per our institutional
protocols. The mean calculation time for 13 influence matrices in robust
optimization by VPMC was 41.6 seconds. Conclusion: VPMC has been successfully
enhanced to model aperture blocks in dose calculation and optimization for the
PBSPT-based SRS.Comment: 3 tables, 3 figure
‘Just like talking to someone about like shit in your life and stuff, and they help you’: hopes and expectations for therapy among depressed adolescents
Objective: To explore hopes and expectations for therapy among a clinical population of depressed adolescents. Method: As part of a randomised clinical trial, 77 adolescents aged 11 to 17, with moderate to severe depression, were interviewed using a semi-structured interview schedule. The interviews were analysed qualitatively, using Framework Analysis. Results: The findings are reported around five themes: “The difficulty of imagining what will happen in therapy”, "the 'talking cure'"; “the therapist as doctor”, “therapy as a relationship” and “regaining the old self or developing new capacities”. Conclusions: Differing expectations are likely to have implications for the way young people engage with treatment, and failure to identify these expectations may lead to a risk of treatment breakdown
Dopamine Genetic Risk Score Predicts Depressive Symptoms in Healthy Adults and Adults with Depression
Background: Depression is a common source of human disability for which etiologic insights remain limited. Although abnormalities of monoamine neurotransmission, including dopamine, are theorized to contribute to the pathophysiology of depression, evidence linking dopamine-related genes to depression has been mixed. The current study sought to address this knowledge-gap by examining whether the combined effect of dopamine polymorphisms was associated with depressive symptomatology in both healthy individuals and individuals with depression. Methods: Data were drawn from three independent samples: (1) a discovery sample of healthy adult participants (n = 273); (2) a replication sample of adults with depression (n = 1,267); and (3) a replication sample of healthy adult participants (n = 382). A genetic risk score was created by combining functional polymorphisms from five genes involved in synaptic dopamine availability (COMT and DAT) and dopamine receptor binding (DRD1, DRD2, DRD3). Results: In the discovery sample, the genetic risk score was associated with depressive symptomatology (β = −0.80, p = 0.003), with lower dopamine genetic risk scores (indicating lower dopaminergic neurotransmission) predicting higher levels of depression. This result was replicated with a similar genetic risk score based on imputed genetic data from adults with depression (β = −0.51, p = 0.04). Results were of similar magnitude and in the expected direction in a cohort of healthy adult participants (β = −0.86, p = 0.15). Conclusions: Sequence variation in multiple genes regulating dopamine neurotransmission may influence depressive symptoms, in a manner that appears to be additive. Further studies are required to confirm the role of genetic variation in dopamine metabolism and depression
Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location
Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are “configural” as no individual cue or element predicts the solution (AC+, AD−, BD+, and BC−). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions (“structural learning”). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps
Human disruption of coral reef trophic structure
The distribution of biomass among trophic levels provides a theoretical basis for understanding energy flow and the hierarchical structure of animal communities. In the absence of energy subsidies [1], bottom-heavy trophic pyramids are expected to predominate, based on energy transfer efficiency [2] and empirical evidence from multiple ecosystems [3]. However, the predicted pyramid of biomass distribution among trophic levels may be disrupted through trophic replacement by alternative organisms in the ecosystem, trophic cascades, and humans preferentially impacting specific trophic levels [4, 5 and 6]. Using empirical data spanning >250 coral reefs, we show how trophic pyramid shape varies given human-mediated gradients along two orders of magnitude in reef fish biomass. Mean trophic level of the assemblage increased modestly with decreasing biomass, contrary to predictions of fishing down the food web [7]. The mean trophic level pattern is explained by trophic replacement of herbivorous fish by sea urchins at low biomass and the accumulation of slow-growing, large-bodied, herbivorous fish at high biomass. Further, at high biomass, particularly where fishers are not selectively removing higher trophic level individuals, a concave trophic distribution emerges. The concave trophic distribution implies a more direct link between lower and upper trophic levels, which may confer greater energy efficiency. This trophic distribution emerges when community biomass exceeds ∼650 kg/ha, suggesting that fisheries for upper trophic level species will only be supported under lightly fished scenarios
Structural Competency: Curriculum for Medical Students, Residents, and Interprofessional Teams on the Structural Factors That Produce Health Disparities
Introduction: Research on disparities in health and health care has demonstrated that social, economic, and political factors are key drivers of poor health outcomes. Yet the role of such structural forces on health and health care has been incorporated unevenly into medical training. The framework of structural competency offers a paradigm for training health professionals to recognize and respond to the impact of upstream, structural factors on patient health and health care. Methods: We report on a brief, interprofessional structural competency curriculum implemented in 32 distinct instances between 2015 and 2017 throughout the San Francisco Bay Area. In consultation with medical and interprofessional education experts, we developed open-ended, written-response surveys to qualitatively evaluate this curriculum\u27s impact on participants. Qualitative data from 15 iterations were analyzed via directed thematic analysis, coding language, and concepts to identify key themes. Results: Three core themes emerged from analysis of participants\u27 comments. First, participants valued the curriculum\u27s focus on the application of the structural competency framework in real-world clinical, community, and policy contexts. Second, participants with clinical experience (residents, fellows, and faculty) reported that the curriculum helped them reframe how they thought about patients. Third, participants reported feeling reconnected to their original motivations for entering the health professions. Discussion: This structural competency curriculum fills a gap in health professional education by equipping learners to understand and respond to the role that social, economic, and political structural factors play in patient and community health
- …